K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2017

 để tui vừa tui làm kiểm tra xong

31 tháng 3 2017

=1/2.2 +1/3.3 +1/4.4 +...........+ 1/2005.2005

=1-1/2+1/2-1/3+1/3-1/4+............+1/2004-1/2005

=1-1/2005<1

suy ra 1-1/2005<3/4

vậy..................

27 tháng 7 2016

Ta có  \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

                                   \(=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

áp dụng vào làm

3 tháng 3 2016

\(\Rightarrow3B=3+\frac{1}{3^1}+\frac{1}{3^2}+....+\frac{1}{3^{2004}}\)

\(\Rightarrow3B-B=\left(3+\frac{1}{3^1}+\frac{1}{3^2}+...+\frac{1}{3^{2004}}\right)-\left(\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2005}}\right)\)

\(\Rightarrow2B=3-\frac{1}{3^{2005}}\Rightarrow B=\left(3-\frac{1}{3^{2005}}\right):2\)

\(\Rightarrow\left(3-\frac{1}{3^{2005}}\right):2<\frac{1}{2}\Rightarrow B<\frac{1}{2}\)

3 tháng 3 2016

3B=1+1/3+1/32+...+1/32004

3B-B=1-1/32005

2B=1-1/32005

B=1/2-1/(32005.2)

Vậy B <1/2

9 tháng 6 2017

sửa đề câu 1 :

\(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{99}{100!}\)

\(=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+...+\frac{100-1}{100!}\)

\(=\frac{1}{1!}-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{99!}-\frac{1}{100!}\)

\(=1-\frac{1}{100!}< 1\)

sửa đề câu 2

\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}\)

\(=\frac{1.2}{2!}-\frac{1}{2!}+\frac{2.3}{3!}-\frac{1}{3!}+\frac{3.4}{4!}-\frac{1}{4!}+...+\frac{99.100}{100!}-\frac{1}{100!}\)

\(=\left(\frac{1.2}{2!}+\frac{2.3}{3!}+\frac{3.4}{4!}+...+\frac{99.100}{100!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{100!}\right)\)

\(=\left(1+1+\frac{1}{2!}+...+\frac{1}{98!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{100!}\right)\)

\(=2-\frac{1}{99!}-\frac{1}{100!}< 2\)

20 tháng 6 2019

khi cộng cac số có tử bé hơn mẫu thì tổng sẽ <1 nha 

22 tháng 7 2019

Mik lười quá bạn tham khảo câu 3 tại đây nhé:

Câu hỏi của nguyen linh nhi - Toán lớp 6 - Học toán với OnlineMath

22 tháng 7 2019

\(S=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{37\cdot38\cdot39}\)

\(2S=\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{37\cdot38}-\frac{1}{38\cdot39}\)

\(2S=\frac{1}{2}-\frac{1}{38\cdot39}\)

\(S=\frac{1}{4}-\frac{1}{2\cdot38\cdot39}< \frac{1}{4}\)

18 tháng 9 2017

\(\frac{1}{n\sqrt{n-1}}=\frac{\sqrt{n-1}}{\left(n-1\right)n}=\sqrt{n-1}.\frac{1}{\left(n-1\right)n}=\sqrt{n-1}\left(\frac{1}{n-1}-\frac{1}{n}\right)\)

\(=\sqrt{n-1}\left(\frac{1}{\sqrt{n-1}}-\frac{1}{\sqrt{n}}\right)\left(\frac{1}{\sqrt{n-1}}+\frac{1}{\sqrt{n}}\right)\)

\(=\left(\frac{1}{\sqrt{n-1}}-\frac{1}{\sqrt{n}}\right)\left(1+\frac{\sqrt{n-1}}{\sqrt{n}}\right)\)

\(< \left(\frac{1}{\sqrt{n-1}}-\frac{1}{\sqrt{n}}\right)\left(1+\frac{\sqrt{n}}{\sqrt{n}}\right)=2\left(\frac{1}{\sqrt{n-1}}-\frac{1}{\sqrt{n}}\right)\)

Áp dụng vài bài toán:

\(\frac{1}{2}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{2005\sqrt{2004}}\)

\(< 2\left(1-\frac{1}{\sqrt{2}}\right)+2\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)+2\left(\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}\right)+...+2\left(\frac{1}{\sqrt{2004}}-\frac{1}{\sqrt{2005}}\right)\)

\(=2\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}+...+\frac{1}{\sqrt{2004}}-\frac{1}{\sqrt{2005}}\right)\)

\(=2\left(1-\frac{1}{\sqrt{2005}}\right)=2-\frac{2}{\sqrt{2005}}< 2\)

Vậy \(\frac{1}{2}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{2005\sqrt{2004}}< 2\)