K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Xét ΔNMI và ΔNEI co

NM=NE

góc MNI=góc ENI

NI chung

=>ΔNMI=ΔNEI

=>IM=IE

=>ΔIME cân tại I

2: góc KME+góc NEM=90 độ

góc PME+góc NME=90 độ

mà góc NEM=góc NME

nên góc KME=góc PME

=>ME là phân giác của góc KMP

3: góc MIQ=90 độ-góc MNI

góc MQI=góc NQK=90 độ-góc PNI

mà góc MNI=góc PNI

nên góc MIQ=góc MQI

=>ΔMIQ cân tại M

4: Xét ΔIMF vuông tại M và ΔIEP vuông tại E có

IM=IE

góc MIF=góc EIP

=>ΔIMF=ΔIEP

=>MF=EP

Xét ΔNFP có NM/MF=NE/EP

nên ME//FP

22 tháng 2 2023

thanks you bạn

 

8 tháng 11 2023

Áp dụng định lý Py-ta-go cho tam giác MNP vuông tại M:

\(MN^2+MP^2=NP^2\)

Thay số: \(7^2+MP^2=25^2\)

\(\Rightarrow MP=24\left(cm\right)\)

Áp dụng hệ thức lượng cho tam giác vuông MNP, đường cao MH ta có:

\(MK.NP=MN.MP\)

Thay số: \(MK.25=7.24\Rightarrow MK=6,72\left(cm\right)\)

Áp dụng định lý Py - ta - go cho tam giác MNK vuông tại K ta có:

\(MK^2+NK^2=MN^2\)

Thay số: \(6,72^2+NK^2=7^2\Rightarrow NK=1,96cm\)

8 tháng 11 2023

thanks bn

 

a: Xét ΔMNP vuông tại M có 

\(\sin\widehat{N}=\dfrac{MP}{PN}=\dfrac{4}{5}\)

\(\cos\widehat{N}=\dfrac{MN}{MP}=\dfrac{3}{5}\)

\(\tan\widehat{N}=\dfrac{MP}{MN}=\dfrac{4}{3}\)

\(\cot\widehat{N}=\dfrac{MN}{MP}=\dfrac{3}{4}\)

b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔMNP vuông tại M có MH là đường cao ứng với cạnh huyền NP, ta được:

\(\left\{{}\begin{matrix}MH\cdot NP=MN\cdot MP\\MN^2=HN\cdot NP\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}MH=2.4cm\\NH=1.8cm\end{matrix}\right.\)

15 tháng 3 2022

 minh ko bt 

a: ΔMDN vuông tại D

=>\(MD^2+DN^2=MN^2\)

=>\(MN^2=6^2+8^2=36+64=100=10^2\)

=>MN=10(cm)

Xét ΔDNM vuông tại D có \(\sin DMN=\frac{DN}{MN}=\frac{6}{10}=\frac35\)

nên \(\hat{DMN}\) ≃36 độ 52p

b: Xét ΔMDN vuông tại D có DA là đường cao

nên \(MA\cdot MN=MD^2\left(1\right)\)

Xét ΔMDP vuông tại D có DB là đường cao

nên \(MB\cdot MP=MD^2\left(2\right)\)

Từ (1),(2) suy ra \(MA\cdot MN=MB\cdot MP\)

c: Xét ΔMIN vuông tại I và ΔMKP vuông tại K có

\(\hat{IMN}\) chung

Do đó: ΔMIN~ΔMKP

=>\(\frac{MI}{MK}=\frac{MN}{MP}\)

=>\(\frac{MI}{MN}=\frac{MK}{MP}\)

Xét ΔMIK và ΔMNP có

\(\frac{MI}{MN}=\frac{MK}{MP}\)

góc IMK chung

Do đó: ΔMIK~ΔMNP

=>\(\hat{MIK}=\hat{MNP}\left(3\right)\)

ta có: \(MA\cdot MN=MB\cdot MP\)

=>\(\frac{MA}{MP}=\frac{MB}{MN}\)

Xét ΔMAB và ΔMPN có

\(\frac{MA}{MP}=\frac{MB}{MN}\)

góc AMB chung

Do đó: ΔMAB~ΔMPN

=>\(\hat{MBA}=\hat{MNP}\left(4\right)\)

Từ (3),(4) suy ra \(\hat{MBA}=\hat{MIK}\)

mà hai góc này là hai góc ở vị trí đồng vị

nên BA//KI

a: NP=căn 8^2+15^2=17cm

MK=8*15/17=120/17cm

b: góc MEK=góc MFK=góc FME=90 độ

=>MEKF là hình chữ nhật

=>MK=EF=120/17cm

c: ΔMKN vuông tại K có KE là đường cao

nên ME*MN=MK^2

ΔMKP vuông tại K có KF là đường cao

nên MF*MP=MK^2

=>ME*MN=MF*MP