Tìm các số x;y;z thỏa mãn đẳng thức
\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+|x+y+z|=0.\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Các số nguyên x thỏa mãn là:
\(x\in\left\{-10;-9;-8;-7;-6;-5;-4;-3;-2;-1;0;1;2;3;4;5;6;7;8\right\}\)
Tổng các số nguyên trên là:
\((8-10).19:2=-19\)
b)
Các số nguyên x thỏa mãn là:
\(x\in\left\{-9;-8;-7;-6;-5;-4;-3;-2;-1;...;6;7;8;9;10\right\}\)
Tổng các số trên là:
\((10-9).20:2=10\)
c) Các số nguyên x thỏa mãn là:
\(x\in\left\{-15;-14;-13;-12;-11;-10;-9;-8;-7;-6;-5;...;12;13;14;15;16\right\}\)
Tổng các số nguyên đó là:
\((16-15).32:2=16\)
Bài 1:
$x-1=|2x-1|\geq 0\Rightarrow x\geq 1$
$\Rightarrow 2x-1>0\Rightarrow |2x-1|=2x-1$. Khi đó:
$2x-1=x-1\Leftrightarrow x=0$ (không thỏa mãn vì $x\geq 1$)
Vậy không tồn tại $x$ thỏa đề.
Bài 2:
Nếu $x\geq \frac{1}{3}$ thì:
$3x-1=2x+3$
$\Leftrightarrow x=4$ (tm)
Nếu $x< \frac{1}{3}$ thì:
$1-3x=2x+3$
$\Leftrightarrow -2=5x\Leftrightarrow x=\frac{-2}{5}$ (tm)
Vậy......
Giải:
a) Vì (x-5) là Ư(6)={-6;-3;-2;-1;1;2;3;6}
Ta có bảng giá trị:
x-5=-6 ➜x=-1
x-5=-3 ➜x=2
x-5=-2 ➜x=3
x-5=-1 ➜x=4
x-5=1 ➜x=6
x-5=2 ➜x=7
x-5=3 ➜x=8
x-5=6 ➜x=11
Vậy x ∈ {-1;2;3;4;5;6;7;8;11}
b) Vì (x-1) là Ư(15)={-15;-5;-3;-1;1;3;5;15}
Ta có bảng giá trị:
x-1=-15 ➜x=-14
x-1=-5 ➜x=-4
x-1=-3 ➜x=-2
x-1=-1 ➜x=0
x-1=1 ➜x=2
x-1=3 ➜x=4
x-1=5 ➜x=6
x-1=15 ➜x=16
Vậy x ∈ {-14;-4;-2;0;2;4;6;16}
c) x+6 ⋮ x+1
⇒x+1+5 ⋮ x+1
⇒5 ⋮ x+1
⇒x+1 ∈ Ư(5)={-5;-1;1;5}
Ta có bảng giá trị:
x+1=-5 ➜x=-6
x+1=-1 ➜x=-2
x+1=1 ➜x=0
x+1=5 ➜x=4
Vậy x ∈ {-6;-2;0;4}
Chúc bạn học tốt!
a) Ta có (x-5)là Ư(6)
\(\Rightarrow\)(x-5)\(\in\)\(\left\{-1;-2;-3;-6;1;2;3;6\right\}\)
\(\Rightarrow\)x\(\in\)\(\left\{4;3;2;-1;6;7;8;11\right\}\)
Vậyx\(\in\)\(\left\{4;3;2;-1;6;7;8;11\right\}\)
b)Ta có (x-1) là Ư(15)
\(\Rightarrow\left(x-1\right)\in\left\{-15;-5;-3;-1;1;3;5;15\right\}\)
\(\Rightarrow\)x\(\in\left\{-14;-4;-2;0;2;4;6;16\right\}\)
Vậy x\(\in\left\{-14;-4;-2;0;2;4;6;16\right\}\)
c)Ta có (x+6) \(⋮\) (x+1)
=(x+1)+5\(⋮\) (x+1)
Mà (x+1)\(⋮\) (x+1) nên để (x+6) \(⋮\) (x+1) thì 5 \(⋮\) (x+1)
Nên (x+1)\(\in\)Ư(5)
\(\Rightarrow\)x+1\(\in\)\(\left\{5;1;-1;-5\right\}\)
\(\Rightarrow x\in\left\{4;0;-2;-6\right\}\)
Bài 1 :
\(\left|2x-1\right|=x-1\)ĐK : \(x\ge1\)
TH1 : \(2x-1=x-1\Leftrightarrow x=0\)(ktm)
TH2 : \(2x-1=1-x\Leftrightarrow3x=2\Leftrightarrow x=-\frac{2}{3}\)(ktm)
Vậy biểu thức ko có x thỏa mãn
Bài 2 :
\(\left|3x-1\right|=2x+3\)ĐK : x >= -3/2
TH1 : \(3x-1=2x+3\Leftrightarrow x=4\)
TH2 : \(3x-1=-2x-3\Leftrightarrow5x=-2\Leftrightarrow x=-\frac{2}{5}\)
a) Để P là phân số thì x-3 khác 0
và x khác -3
b) 5/1
0/-4
1/-3
c) để P là số nguyên thì x+1 chia hết cho x-3
--> (x-3)+4 chia hết cho x-3
--> 4 chia hết cho x-3
--> x-3 thuộc Ư(4)={1;2;4;-1;-2;-4}
Với x-3=1 => x=4
Với x-3=2 => x=5
Với x-3=4 => x=7
Với x-3=(-1) =>x=2
Với x-3=(-2) => x=1
Với x-3=(-4) => x=(-1)
Vậy.....
1.x=1,06;1,07;1,08;1,08;1,09;,1,10;1,11;1,12;..................................................................9,00
\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|=0\)
<=>\(\left|x-\sqrt{2}\right|+\left|y+\sqrt{2}\right|+\left|x+y+z\right|=0\)
Vì \(\left|x-\sqrt{2}\right|\ge0;\left|y+\sqrt{2}\right|\ge0;\left|x+y+z\right|\ge0\)
=>\(\left|x-\sqrt{2}\right|+\left|y+\sqrt{2}\right|+\left|x+y+z\right|\ge0\)
Dấu "=" xảy ra khi \(\left|x-\sqrt{2}\right|=\left|y+\sqrt{2}\right|=\left|x+y+z\right|=0\)
\(\left|x-\sqrt{2}\right|=0\Leftrightarrow x-\sqrt{2}=0\Leftrightarrow x=\sqrt{2};\left|y+\sqrt{2}\right|=0\Leftrightarrow y+\sqrt{2}=0\Leftrightarrow y=-\sqrt{2}\)
\(\left|x+y+z\right|=0\Leftrightarrow x+y+z=0\Leftrightarrow\sqrt{2}+\left(-\sqrt{2}\right)+z=0\Leftrightarrow z=0\)
Vậy .......
do căn >= 0 lx+y+zl >=0 nên vế trái >=0
mà vế trái =0 => từng cái =0