1/x-1+1/x-2=1/x+2+1/x+1
Giải pt
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
DKXD : x khac -1
\(\frac{-x}{x+1}\)+ 3 =\(\frac{2x+3}{x+1}\)
<=> \(\frac{-x}{x+1}\)+\(\frac{3\left(x+1\right)}{x+1}\)= \(\frac{2x+3}{x+1}\)
=> -x + 3x +3 = 2x +3
<=> 2x -2x =3-3
<=> 0x=0
<=> x=0(TMDK)
1) \(9x^4+8x^2-1=0\)
\(\Leftrightarrow9x^4+9x^2-x^2-1=0\)
\(\Leftrightarrow9x^2\left(x^2+1\right)-\left(x^2+1\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(9x^2-1\right)=0\)
\(\Rightarrow9x^2-1=0\)
\(\Leftrightarrow x=\dfrac{\pm1}{3}\)
Vậy...
2) \(\Delta=\left(m-1\right)^2-4\left(-m^2+m-1\right)\) \(=5m^2-6m+5\)
Có: \(5m^2-6m+5=5\left(m^2-\dfrac{6}{5}m+\dfrac{9}{25}\right)+\dfrac{16}{5}\)
\(=5\left(m-\dfrac{3}{5}\right)^2+\dfrac{16}{5}\ge\dfrac{16}{5}>0\forall m\in R\)
\(\Rightarrow\Delta>0\forall m\in R\)
Vậy: PT luôn có 2 nghiệm phân biệt với mọi m.
\(a,\Leftrightarrow-\dfrac{1}{2}x=\dfrac{1}{4}\Leftrightarrow x=-\dfrac{1}{2}\\ b,\Leftrightarrow\dfrac{1}{6}:x=\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}\Leftrightarrow x=\dfrac{1}{6}:\dfrac{5}{6}=\dfrac{1}{5}\\ c,\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{5}=3\\x+\dfrac{1}{5}=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{14}{5}\\x=-\dfrac{16}{5}\end{matrix}\right.\)
\(d,\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2=\dfrac{22}{9}-\dfrac{7}{3}=\dfrac{1}{9}\\ \Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{1}{3}\\x+\dfrac{1}{2}=-\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{6}\\x=-\dfrac{5}{6}\end{matrix}\right.\\ e,\Leftrightarrow2\left|x\right|=2-\dfrac{1}{2}=\dfrac{3}{2}\\ \Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{3}{2}\\2x=-\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=-\dfrac{3}{4}\end{matrix}\right.\)
\(f,\Leftrightarrow\left|x+\dfrac{1}{2}\right|=1+\dfrac{1}{6}=\dfrac{7}{6}\\ \Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{7}{6}\\x+\dfrac{1}{2}=-\dfrac{7}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-\dfrac{5}{3}\end{matrix}\right.\)
e: ta có: \(2\left|x\right|+\dfrac{1}{2}=2\)
\(\Leftrightarrow2\left|x\right|=\dfrac{3}{2}\)
\(\Leftrightarrow\left|x\right|=\dfrac{3}{4}\)
hay \(x\in\left\{\dfrac{3}{4};-\dfrac{3}{4}\right\}\)
`[2-x]/x >= 1`
`<=>[2-x-x]/x >= 0`
`<=>[2-2x]/x >= 0`
`<=>0 < x <= 1`
`->\bb B`
B) \(\left|3x-6\right|+\left|x+1\right|=x\)
\(\Leftrightarrow\left|3x-6\right|+\left|x+1\right|-x=0\)
TH1: \(x\le-1\)
6-3x-x-1-x=0\(\Leftrightarrow\) x=\(-1\) (thỏa mãn)
TH2: \(-1< x\le2\)
6-3x +x+1-x=0\(\Leftrightarrow\) x= \(\dfrac{7}{3}\)( thỏa mãn)
TH3 : x>2
3x-6+x+1-x=0\(\Leftrightarrow x=\dfrac{5}{3}\) (loại)
\(\left|x^2-1\right|=2x+1\left(dk:2x+1\ge0\Leftrightarrow2x\ge-1\Leftrightarrow x\le-\dfrac{1}{2}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=2x+1\\x^2-1=-2x-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-1-2x-1=0\\x^2-1+2x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-2=0\\x^2+2x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-2+3=3\\x.\left(x+2\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)^2=3\\\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1^2\right)-\left(\sqrt{3}\right)^2=0\\\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1-\sqrt{3}\right).\left(x-1+\sqrt{3}\right)=0\\\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x=1-\sqrt{3}\left(loai\right)\\x=1+\sqrt{3\left(loai\right)}\end{matrix}\right.\\\left[{}\begin{matrix}x=0\left(loai\right)\\x=-2\left(tm\right)\end{matrix}\right.\end{matrix}\right.\)
Vậy x = -2
a)Ta có:5/3.x^2-1/2.x^2y
=(5/3-1/2).x^2y
= 7/6.x^2y(Bậc 3)
b)Ta có: 7/6.(-2)^2(-1)
= 7/6.4.(-1)
= 7/6.(-4)
=-28/6
a, - A=\(\dfrac{5}{3}\).x2.y-\(\dfrac{-1}{2}\).x2.y
=\(\dfrac{13}{6}\).x2.y
- Bậc= 3.
b, A=\(\dfrac{13}{6}\).(-2)2.(-1)
=\(\dfrac{13}{6}\).4.(-1)
=\(\dfrac{-26}{3}\)
\(\sqrt{-2x^2+6}=x-1\left(đk:\sqrt{3}\ge x\ge1\right)\)
\(\Leftrightarrow-2x^2+6=x^2-2x+1\)
\(\Leftrightarrow3x^2-2x-5=0\)
\(\Leftrightarrow\left(x+1\right)\left(3x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\left(l\right)\\x=\dfrac{5}{3}\left(tm\right)\end{matrix}\right.\)