K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2017

\(\left(a-b\right)^2\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow a^2+2ab+b^2\ge2ab+2ab\)

\(\Rightarrow\left(a+b\right)^2\ge4ab\) (đpcm)

19 tháng 3 2017

Ta có : với a,b>0 theo bđt Cô si: a+b\(\ge\)\(2\sqrt{ab}\) 

=> (a+b)\(^2\)\(\ge\)4ab

 nhớ k mình nha ^^

7 tháng 3 2020

\(\Leftrightarrow\left(a-b\right)^2\ge0\left(LĐ\right)\)

4 tháng 3 2020

\(\left(a+3b\right)\left(b+3a\right)\le\left(\frac{4a+4b}{2}\right)^2=\left(2a+2b\right)^2\)

=>\(\frac{1}{2}\sqrt{\left(a+3b\right)\left(b+3a\right)}\le\frac{1}{2}\left(2a+2b\right)=a+b\)

Mình làm phần dễ nhất rồi, còn lại của bạn đó ^^


 

6 tháng 4 2020

Đặt gif.latex?%5Csqrt%7Ba%7D%3Dx%3B%5Csqrt%7Bb%7D%3Dy. Do đó gif.latex?x+y%3D1. Cần chứng minh:

gif.latex?3%28x%5E2+y%5E2%29%5E2%20-%28x%5E2+y%5E2%29+4x%5E2%20y%5E2%20%5Cgeqq%20%5Cfrac%7B1%7D%7B2%7D%20%5Csqrt%7B%28x%5E2+3y%5E2%29%283x%5E2+y%5E2%29%7D

Or $3(x^2+y^2)^2 -(x^2+y^2)+4x^2 y^2 \geqq  \frac{1}{2} \sqrt{3(x^4+y^4)+10x^2 y^2}  $

Bình phương 2 vế và xét hiệu, ta cần chứng minh:

$ \left( 1/4-xy \right)  \left( 256\, \left( 1/4-xy \right) ^{3}+64\,  \left( 1/4-xy \right) ^{2}+5-16\,xy \right)\geqq 0$

Đó là điều hiển nhiên vì: $xy \leqq 1/4 (x+y)^2 =1/4$

Done.

9 tháng 5 2019

Ta có a>0;b>0\(\Leftrightarrow\)\(\left(a+b\right)\left(a-b\right)^2\ge0\)(dấu '=' xảy ra khi a=b)\(\Leftrightarrow a^3+b^3-a^2b-ab^2\ge0\Leftrightarrow3a^3+3b^3-3a^2b-3ab^2\ge0\Leftrightarrow4a^3+4b^3\ge a^3+3a^2b+3ab^2+b^3\Leftrightarrow4\left(a^3+b^3\right)\ge\left(a+b\right)^3\Leftrightarrow8\left(a^3+b^3\right)\ge2\left(a+b\right)^3\Leftrightarrow\frac{a^3+b^3}{2}\ge\left(\frac{a+b}{2}\right)^3\)(đpcm)

29 tháng 7 2019

\(VP=\left(a+b\right)^2-4ab\)

        \(=a^2+2ab+b^2-4ab\)

        \(=a^2-2ab+b^2\)

         \(=\left(a-b\right)^2=VT\)

 Vậy \(\left(a-b\right)^2=\left(a+b\right)^2-4ab\)

29 tháng 7 2019

vp va vt la gi vay

3 tháng 10 2019

https://hoc24.vn/id/2782086

3 tháng 10 2019

@Nguyễn Việt Lâm

15 tháng 12 2018

Áp dụng BĐT AM-GM: \(\dfrac{1}{2}\sqrt{\left(a+3b\right)\left(b+3a\right)}\le\dfrac{1}{4}\left(4a+4b\right)=a+b\)

Ta chứng minh: \(3\left(a+b\right)^2+4ab\ge2\left(a+b\right)\)

hay \(3\left(a+b\right)^2+4ab\ge2\left(a+b\right)\left(\sqrt{a}+\sqrt{b}\right)^2\)

\(\Leftrightarrow\left(a+b-2\sqrt{ab}\right)^2\ge0\)( đúng)

Dấu = xảy ra khi \(a=b=\dfrac{1}{4}\)