Chứng minh:
1/6 < 1/5^2 + 1/6^2 +........ + 1/ 100^2 < 1/4
Ghi cách giải dùm mik nhá
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
lúc đầu mk cx nghĩ là sai đề nhg cô giáo mk bảo đúng thì cô ms cho
a>
\(\frac{1}{2^2}+\frac{1}{100^2}\)=1/4+1/10000
ta có 1/4<1/2(vì 2 đề bài muốn chứng minh tổng đó nhỏ 1 thì chúng ta phải xét xem có bao nhiêu lũy thừa hoặc sht thì ta sẽ lấy 1 : cho số số hạng )
1/100^2<1/2
=>A<1
Đặt \(B=\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+...+\dfrac{1}{100^2}\)
Ta thấy:
\(B=\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+...+\dfrac{1}{100^2}< \dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{99.100}\)
\(=\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=\dfrac{1}{4}-\dfrac{1}{100}< \dfrac{1}{4}\)
\(\Rightarrow B< \dfrac{1}{4}\)
Ta lại thấy:
\(B>\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{100.101}=\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{100}-\dfrac{1}{101}=\dfrac{1}{5}-\dfrac{1}{101}>\dfrac{1}{6}\)
\(\Rightarrow B>6\)
\(\Rightarrow\dfrac{1}{6}< B< \dfrac{1}{4}\left(dpcm\right)\)
*Có : 52 < 5.6 => \(\frac{1}{5^2}>\frac{1}{5.6}\)
62 < 6.7 =>\(\frac{1}{6^2}>\frac{1}{6.7}\)
....
1002 < 100 . 101 => \(\frac{1}{100^2}>\frac{1}{100.101}\)
Cộng từng vế có :
\(\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}\)
\(A>\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...\frac{1}{100}-\frac{1}{101}\)
\(A>\frac{1}{5}-\frac{1}{101}\)
Mà \(\frac{1}{5}-\frac{1}{101}=\frac{101-5}{105}=\frac{96}{505}\)
=> \(A>\frac{96}{505}\)
Mà \(\frac{1}{6}=\frac{96}{576}< \frac{96}{505}\)
=> \(A>\frac{1}{6}\)(1)
*Có 52 > 5.4 => \(\frac{1}{5^2}< \frac{1}{5.4}\)
.......
1002 > 100.99 => \(\frac{1}{100^2}< \frac{1}{100.99}\)
Cộng từng vế có :
........ => A < \(\frac{96}{400}\)
Có \(\frac{1}{4}=\frac{100}{400}>\frac{96}{400}\)
=> A < \(\frac{1}{4}\)(2)
Từ (1)(2) => đpcm
\(\text{Ta thấy :}\)
\(\frac{1}{5^2}>\frac{1}{5.6}\)
\(\frac{1}{6^2}>\frac{1}{6.7}\)
\(......................................\)
\(\frac{1}{100^2}>\frac{1}{100.101}\)
\(\Rightarrow A=\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}\)
\(\Rightarrow A>\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...\frac{1}{100}-\frac{1}{101}\)
\(\Rightarrow A>\frac{1}{5}-\frac{1}{101}=\frac{101-5}{105}=\frac{96}{505}>\frac{96}{576}=\frac{1}{6}\)
\(\Rightarrow A>\frac{1}{6}\left(1\right)\)
\(\text{Lại thấy :}\)
\(\frac{1}{5^2}< \frac{1}{5.4}\)
\(\frac{1}{6^2}< \frac{1}{5.6}\)
\(..................................\)
\(\frac{1}{100^2}< \frac{1}{100.99}\)
\(\text{Tương tự như trên ta tính được }:\)
\(A< \frac{96}{400}< \frac{100}{400}=\frac{1}{4}\)
\(\Rightarrow A< \frac{1}{4}\left(2\right)\)
\(\text{Từ (1) và (2)}\Rightarrow\frac{1}{6}< A< \frac{1}{4}\)
a) ta có :1/5^2<1/4.5=1/4-1/5
1/6^2<1/5.6=1/5-1/6
.................
1/100^2<1/99.100=1/99-1/100
=>1/5^2+1/6^2+1/7^2+......+1/100^2 <1/4-1/100=6/25<1/4(1)
ta lại có:1/5^2>1/5.6=1/5-1/6
1/6^2>1/6.7=1/6-1/7
.................
1/100^2>1/100.101=1/100-1/101
=>1/5^2+1/6^2+1/7^2+......+1/100^2>1/5-1/101=96/505>1/6(2)
từ (1)(2) suy ra 1/6<1/5^2+1/6^2+1/7^2+......+1/100^2 < 1/4
b)ta có:1/11+1/12+....+1/70=(1/11+1/12+...+1/20)+(1/21+1/22+...+1/30)+(1/31+1/32+...+1/40)+(1/41+1/42+...+1/50)+(1/51+1/52+...+1/60)+(1/61+1/62+...+1/70)>(1/20+1/20+...+1/20)(10 phân số 1/20)+(1/30+1/30+...+1/30)(10 phân số 1/30)+(1/40+1/40+...+1/40)(10 phân số 1/40)+(1/50+1/50+...+1/50)(10 phân số 1/50)+(1/60+1/60+...+1/60)(10 phân số 1/60)=1/2+1/3+1/4+1/5+1/6=29/20>4/3(1)
ta lại có:1/11+1/12+....+1/70=(1/11+1/12+...+1/20)+(1/21+1/22+...+1/30)+(1/31+1/32+...+1/40)+(1/41+1/42+...+1/50)+(1/51+1/52+...+1/60)+(1/61+1/62+...+1/70)<(1/11+1/11+...+1/11)(10 phân số 1/11)+(1/21+1/21+...+1/21)(10 phân số 1/21)+(1/31+1/31+...+1/31)(10 phân số 1/31)+(1/41+1/41+...+1/41)(10 phân số 1/41)+(1/51+1/51+...+1/51)(10 phân số 1/51)+(1/61+1/61+...+1/61)(10phân số 1/61) =10/11+10/21+10/31+10/41+10/51+10/61=2,311777327<5/2(2)
từ (1)(2)=>4/3<1/11+1/12+....+1/70<5/2
1/5^2< 1/4.5=1/4-1/5
1/6^2<1/5.6=1/5-1/6
..
1/99^2<1/98.99=1/98-1/99
1/100^2<1/99.100=1/99-1/100
Cộng vế theo vế, đơn giản:
=> 1/5^2+1/6^2+...+1/100^2< 1/4 -1/100<1/4
1/5^2> 1/5.6=1/5-1/6
1/6^2>1/6.7=1/6-1/7
..
1/99^2>1/99.100=1/99-1/100
1/100^2>1/100.101=1/100-1/101
Cộng vế theo vế, đơn giản:
\(\Rightarrow\)1/5^2+1/6^2+...+1/100^2>1/5 -1/101=96/505>1/6
Vậy:
1/6<1/5^2+1/6^2+...+1/100^2<1/4