K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2018

đầu tiên ta chứng minh với x,y,z,t bất kì thì:

\(\sqrt{x^2+y^2}+\sqrt{z^2+t^2}\ge\sqrt{\left(x+z\right)^2+\left(y+t\right)^2}\) (*)

thật vậy bđt (*) tương đương với: 

\(x^2+y^2+z^2+t^2+2\sqrt{\left(x^2+y^2\right)\left(z^2+t^2\right)}\ge x^2+2xz+z^2+y^2+2yt+t^2\)

\(\Leftrightarrow\sqrt{\left(x^2+y^2\right)\left(z^2+t^2\right)}\ge xz+yt\)

bđt trên đúng vì theo bđt bunhia cốp xki

\(\sqrt{\left(x^2+y^2\right)\left(z^2+t^2\right)}\ge\sqrt{\left(xz+yt\right)^2}=|xz+yt|\ge xz+yt\)

Áp dụng (*) ta có:

\(P=\sqrt{4+x^4}+\sqrt{4+y^4}+\sqrt{4+z^4}\ge\sqrt{\left(2+2\right)^2+\left(x^2+y^2\right)^2}+\sqrt{4+z^2}\)

\(\ge\sqrt{\left(2+2+2\right)^2+\left(x^2+y^2+z^2\right)^2}=\sqrt{36+\left(x^2+y^2+z^2\right)^2}\)

Ta có:

\(\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2+\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)

\(\Rightarrow3x^2+3y^2+3z^2+3\ge2x+2y+2z+2xy+2yz+2zx=2.6=12\)

\(\Rightarrow x^2+y^2+z^2\ge3\Rightarrow P\ge\sqrt{36+3}=3\sqrt{5}\)

Dấu bằng xảy ra khi x=y=z=1

NV
20 tháng 6 2019

Kiểu BĐT bất đối xứng kết quả cực xấu, mình nêu hướng chung, bạn tự giải, chứ kết quả toàn căn thức nhìn đã mất cảm tình rồi:

Ở ngoài nháp, phân tích như sau:

Dự đoán điểm rơi \(x=z\)

Ta thiết lập lần lượt các đánh giá:

\(a\left(x^2+z^2\right)\ge2axz\) ; \(x^2+b^2y^2\ge2bxy\); \(z^2+b^2y^2\ge2byz\) (1)

Cộng vế với vế:

\(\left(a+1\right)x^2+2b^2y^2+\left(a+1\right)z^2\ge2bxy+2byz+2axz\)

Để vế trái là \(k.P\) và vế phải là \(n\left(xy+yz+3xz\right)\) thì:

\(\left\{{}\begin{matrix}a+1=2b^2\\\frac{a}{b}=\frac{3}{1}\end{matrix}\right.\) \(\Leftrightarrow2b^2-3b-1=0\Rightarrow b=\frac{3+\sqrt{17}}{4}\Rightarrow a=\frac{9+3\sqrt{17}}{4}\)

Vậy là xong, thay lần lượt a; b vừa tìm được vào (1) và làm vào giấy:

\(\frac{9+3\sqrt{17}}{2}\left(x^2+z^2\right)\ge\left(9+3\sqrt{17}\right)xz\)

....

Tương tự và cộng lại sau đó chia vế phải cho \(a+1=...\) là xong

8 tháng 4 2018

cũng bằng 3

12 tháng 3 2023

Ta coˊ :xy+x+1x+yz+y+1y+xz+z+1z

=���+�+1+�����+��+�+����2��+���+��=xy+x+1x+xyz+xy+xxy+x2yz+xyz+xyxyz

=���+�+1+����+�+1+1��+�+1(Vıˋ ���=1)=xy+x+1x+xy+x+1xy+xy+x+11(Vıˋ xyz=1)

=�+��+1��+�+1=xy+x+1x+xy+1

=1=1

 

 

25 tháng 12 2017

Trong de thi hsg cap Thanh pho Ha Noi 2016-2017 co dap an do ban

26 tháng 12 2017

uk  thanks bn

NV
13 tháng 6 2020

Bunhiacopxki: \(\left(x^2+yz+zx\right)\left(y^2+yz+zx\right)\ge\left(xy+yz+zx\right)^2\)

\(\Rightarrow\frac{xy}{x^2+yz+zx}\le\frac{xy\left(y^2+yz+zx\right)}{\left(xy+yz+zx\right)^2}\)

Thiết lập tương tự và cộng lại:

\(\Rightarrow VT\le\frac{xy\left(y^2+yz+zx\right)+yz\left(z^2+xy+zx\right)+zx\left(x^2+yz+xy\right)}{\left(xy+yz+zx\right)^2}\)

\(VT\le\frac{xy^3+xy^2z+x^2yz+yz^3+xy^2z+xyz^2+x^3z+xyz^2+x^2yz}{\left(xy+yz+zx\right)^2}\)

Ta chỉ cần chứng minh: \(\frac{xy^3+xy^2z+x^2yz+yz^3+xy^2z+xyz^2+x^3z+xyz^2+x^2yz}{\left(xy+yz+zx\right)^2}\le\frac{x^2+y^2+z^2}{xy+yz+zx}\)

\(\Leftrightarrow xy^3+xy^2z+x^2yz+yz^3+xy^2z+xyz^2+x^3z+xyz^2+x^2yz\le\left(x^2+y^2+z^2\right)\left(xy+yz+zx\right)\)

\(\Leftrightarrow x^2yz+xy^2z+xyz^2\le x^3y+y^3z+z^3x\)

\(\Leftrightarrow\frac{x^2}{z}+\frac{y^2}{x}+\frac{z^2}{y}\ge x+y+z\) (đúng theo Cauchy-Schwarz)

Dấu "=" xảy ra khi \(x=y=z\)

13 tháng 6 2020

@Nguyễn Việt Lâm