Tính tổng A = 1/2 +1/2^2 + 1/2^3 + 1/2^4 + ..... +1/2^10
Giúp mình với!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=1+3+3^2+3^3+...+3^10
3.S=3+3^2+3^3+3^4+...+3^11
3.S-S=(3+3^2+3^3+3^4+...+3^10)-(1+3+3^2+3^3+...+3^10
3.S-S=3+3^2+3^3+3^4+...+3^11-1-3-3^2-3^3-...-3^10
S=3^11-1
\(a,\dfrac{-3}{5}:\dfrac{15}{18}=\dfrac{-3}{5}\times\dfrac{18}{15}=\dfrac{-3}{5}\times\dfrac{6}{5}=\dfrac{-18}{25}\\ b,\dfrac{-5}{1}:\left(-4\right)=\left(-5\right):\left(-4\right)=\dfrac{5}{4}\\ c,-28:\dfrac{-7}{25}=-28\times\dfrac{25}{-7}=100\\ d,\dfrac{51}{8}:\dfrac{-2}{10}=\dfrac{51}{8}\times\dfrac{10}{-2}=\dfrac{51}{8}\times\left(-5\right)=\dfrac{-255}{8}\)
Ta có: \(\left(x+1\right)^3-\left(x-1\right)^3-6\left(x-1\right)^2=-10\)
\(\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1-6\left(x^2-2x+1\right)=-10\)
\(\Leftrightarrow6x^2+2-6x^2+12x-6=-10\)
\(\Leftrightarrow12x=-10+6-2=-6\)
hay \(x=-\dfrac{1}{2}\)
1) \(x:\dfrac{1}{3}=\dfrac{1}{2}+\dfrac{1}{3}\)
\(\Rightarrow3\times x=\dfrac{5}{6}\Rightarrow x=\dfrac{5}{18}\)
2) \(\left(x:\dfrac{2}{3}\right):\dfrac{2}{5}=\dfrac{7}{10}\)
\(\Rightarrow\dfrac{3}{2}\times x=\dfrac{7}{10}\times\dfrac{2}{5}=\dfrac{7}{25}\)
\(\Rightarrow x=\dfrac{7}{25}:\dfrac{3}{2}=\dfrac{14}{75}\)
Áp dụng công thức \(1+2+...+n=\frac{n\left(n+1\right)}{2}\)ta có:
\(E=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{200}\left(1+2+...+200\right)\)
\(=1+\frac{1}{2}.\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}+....+\frac{1}{200}.\frac{200.201}{2}\)
\(=1+\frac{3}{2}+\frac{4}{2}+....+\frac{201}{2}\)
\(=\frac{2+3+4+...+201}{2}=\frac{\frac{201.202}{2}-1}{2}=10150\)
1023/1024
1023/1024 nha bạn