tìm các số nguyên dương x, y >1 sao cho x + 3 chia hết cho yvà y + 3 chia hết cho x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử \(A=1+x+y⋮p\)
Ta có:
\(p=q.B\)(với q là số nguyên tố)
\(\Rightarrow1+x+y⋮q\)
Mà ta lại có:
\(\Rightarrow\hept{\begin{cases}x^{2016}⋮p\\y^{2017}⋮p\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x^{2016}⋮q\\y^{2017}⋮q\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x⋮q\\y⋮q\end{cases}}\)
\(\Rightarrow1+x+y⋮̸q\)
Mâu thuẫn giả thuyết. Vậy \(A⋮̸p\)
Do \(3x-1⋮y\) và \(3y+1⋮x\)nên \(\left(3x-1\right)\left(3y+1\right)⋮xy\)
\(\Rightarrow9xy+3x+3y+1⋮xy\)
Mà \(9xy⋮xy\)
\(\Rightarrow\frac{3x}{y}+3+y\frac{1}{y}⋮x\)
Do vai trò của x , y như nhau , nên giả sử
\(\Rightarrow\frac{x}{y}\le1\)
\(\Rightarrow\frac{3x}{y}+3+\frac{1}{y}< 7\)
\(\Rightarrow1< x< 7\)
\(\Rightarrow x=2;3;4;5;6\)
Thay x vào 3x + 1 \(⋮\)y và 3y-1\(⋮x\)
TH1:x=2,y=5
TH2:x=3,y=6