Cho tam giác ABC cân,đường cao AH(Hthuộc BC)
a)Chứng minh:HB=BC
b) Biết: AB=5cm,BC=6cm.Tính độ dài AH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nha!!!
AH là đường cao của tam giác ABC cân tại A
=> AH là đường trung trực của tam giác ABC.
=> H là trung điểm của BC
=> HB = HC = BC/2 = 6/2 = 3
Tam giác ABH vuông tại H có:
\(AB^2=AH^2+BH^2\) (định lí Pytago)
\(AH^2=AB^2-BH^2\)
\(AH^2=5^2-3^2\)
\(AH^2=25-9\)
\(AH^2=16\)
\(AH=\sqrt{16}\)
\(AH=4\)
a)Xét 2 tam giác vuông HAB và HAC có:
AB=AC=5
AH: cạnh chung
Do đó tam giác HAB= tam giác HAC (Cạnh huyền-góc nhọn)
=>HB=HC(2 cạnh tương ứng)
b)Ta có HB=HC(1)
HB+HC=BC (2)
Thay (1) vào(2) ta có:
2HB=BC
=>HB=BC/2=6/2=3(cm).
Áp dụng định lí Py-ta-go vào tam giác vuông HAB ta có:
AB^2=HB^2+ HA^2
5^2=3^2+HA^2
HA^2=25-9=16
=>HA=4(cm)
c)Tam giác ABC cân tại A
=>AH vừa là đường cao vừa là đường phân giác
=>Góc BAH= góc CAH
Xét hai tam giác vuông HDA và tam giác vuông HAE có:
Góc BAH= góc CAH (c/m ở trên)
AH: cạnh chung
Do đó tam giác HDA = tam giác HAE(cạnh huyền-góc nhọn)
=>HD=HE(2 cạnh tương ứng)
=>Tam giác HDE cân tại H
a) △ABC cân tại A có AH là đường cao
⇒ AH là đường trung tuyến
\(\Rightarrow BH=\dfrac{1}{2}BC=\dfrac{1}{2}.6=3\left(cm\right)\)
△AHB vuông tại H có \(AB^2=AH^2+HB^2\\ \Rightarrow AH=\sqrt{AB^2-HB^2}=\sqrt{5^2-3^2}=4\left(cm\right)\)
b) △ABC có AH là đường trung tuyến
G là trọng tâm
\(\Rightarrow G\in AH\) hay A; G; H thẳng hàng
c) △ABC cân tại A có AH là đường cao
⇒ AH là đường phân giác
\(\Rightarrow\widehat{BAH}=\widehat{CAH}\)
△ABG và △ACG có:
\(AB=AC\\ \widehat{BAG}=\widehat{CAG}\\ AG:\text{cạnh chung}\)
\(\Rightarrow\text{△ABG = △ACG}\left(c.g.c\right)\)
\(\Rightarrow\widehat{ABG}=\widehat{ACG}\)
a, Xét ΔHBA và ΔABC có :
\(\widehat{H}=\widehat{A}=90^0\)
\(\widehat{B}:chung\)
\(\Rightarrow\Delta HBA\sim\Delta ABC\left(g-g\right)\)
\(\Rightarrow\dfrac{AB}{BC}=\dfrac{AH}{AC}\)
\(\Rightarrow AB.AC=BC.AH\)
b, Xét ΔABC vuông A, theo định lý Pi-ta-go ta được :
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+16^2}=20\left(cm\right)\)
Ta có : \(\Delta HBA\sim\Delta ABC\left(cmt\right)\)
\(\Rightarrow\dfrac{AB}{BC}=\dfrac{AH}{AC}\)
hay \(\dfrac{12}{20}=\dfrac{AH}{16}\)
\(\Rightarrow AH=\dfrac{12.16}{20}=9,6\left(cm\right)\)
a.
Xét hai tam giác vuông HBA và ABC có:
\(\left\{{}\begin{matrix}\widehat{ABH}\text{ chung}\\\widehat{AHB}=\widehat{BAC}=90^0\end{matrix}\right.\)
\(\Rightarrow\Delta HBA\sim\Delta ABC\left(g.g\right)\)
\(\Rightarrow\dfrac{BH}{AB}=\dfrac{AB}{BC}\Rightarrow AB^2=BH.BC\)
b.
Áp dụng định lý Pitago:
\(BC=\sqrt{AB^2+AC^2}=30\left(cm\right)\)
Áp dụng định lý phân giác:
\(\dfrac{AD}{AC}=\dfrac{BD}{BC}\Rightarrow\dfrac{AD}{24}=\dfrac{18-AD}{30}\)
\(\Rightarrow AD=8\left(cm\right)\)
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
b: ΔAHB=ΔAHC
=>\(\widehat{BAH}=\widehat{CAH}\)
=>AH là phân giác của \(\widehat{BAC}\)
c: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
=>HB=HC=BC/2=3cm
ΔAHB vuông tại H
=>\(HA^2+HB^2=AB^2\)
=>\(HA^2+3^2=5^2\)
=>\(HA^2=25-9=16\)
=>HA=4(cm)
xét tg ABH va tg ACH, có
AHB=AHC(=90đ)
AB=AC(tg ABC cân tại a)
AH cạnh chung
Do đó, tg ABH=tg ACH(ch-cgv)
=>HB=HC(tương ứng)
Vậy, HB=HC(DCCM)
bcó BC=6cm=>BH+CH=6cm
lại có BH=CH (theo câu a)
Do đó, BH+BH=6cm
hay 2BH=6cm => BH=3cm
Áp dụng định lý Py-ta-go vao tg ABH vuông tại H, ta có:
AH2+BH2=AB2
hay AH2=AB2-BH2
=>AH2=52-32
=>AH2=25-9
=>AH2=16
=>AH=4( vì AH>0)
Vậy AH=4cm
k cho mình nha, bài trình bày thế này 10 điểm 100% luôn
(Hương tự vẽ hình!)
a) Ta có \(\widehat{ABC}\)cân tại \(A\Rightarrow AH\)vừa là đường cao vừa là trung tuyến
\(\Rightarrow HB=HC\)
b) Ta có: \(HB=HC=\frac{BC}{2}=\frac{6}{2}=3\left(cm\right)\)
Xét \(\Delta ABH\)vuông tại \(H\)có:
\(AH^2+BH^2=AB^2\left(pytago\right)\)
\(AH^2+3^2=5^2\)
\(AH^2+9=25\Rightarrow AH^2=25-9=16\)
\(\Rightarrow AH=\sqrt{16}=4\left(cm\right)\)