K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\frac{a^2+2}{\sqrt{a^2+1}}=\frac{a^2+1+1}{\sqrt{a^2+1}}=\sqrt{a^2+1}+\frac{1}{\sqrt{a^2+1}}\ge2\)

3 tháng 5 2021

\(\forall a\inℝ\)

ta có: a+ 2 \(\ge\)\(2\sqrt{a^2+1}\)

\(\Rightarrow\)a2 + 1 -\(2\sqrt{a^2+1}\)+ 1 \(\ge\)0

\(\Rightarrow\)(\(\sqrt{a^2+1}\)-  1)2 \(\ge\)0 (luôn đúng)

NV
20 tháng 6 2020

Đề bài bạn ghi ko chính xác

Đề đúng có vẻ là \(\frac{a^2+2}{\sqrt{a^2+1}}\ge2\)

19 tháng 6 2018

1) Bất đẳng thức cần chứng minh

\(\Leftrightarrow\) a2 + b2 + c2 + d2 + \(2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge\left(a+c\right)^2+\left(b+d\right)^2\)

\(\Leftrightarrow\) \(ac+bd\le\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\left(1\right)\)

Nếu : ac + bd < 0 : BĐT luôn đúng

Nếu : ac + bd \(\ge\) 0 : Thì (1) tương đương

( ac + bd )2 \(\le\) ( a2 + b2 )( c2 + d2 )

\(\Leftrightarrow\) \(\left(ac\right)^2+\left(bd\right)^2+2abcd\le\left(ac\right)^2+\left(ad\right)^2+\left(bc\right)^2+\left(bd\right)^2\)

\(\Leftrightarrow\) \(\left(ad\right)^2+\left(bc\right)^2-2abcd\ge0\)

\(\Leftrightarrow\) \(\left(ad-bc\right)^2\ge0\) , luôn đúng , vậy bài toán được chứng minh

19 tháng 6 2018

2) Chọn :\(\left\{{}\begin{matrix}a=2\cos x.\cos y\\c=2\sin x.\sin y\\b=d=\sin\left(x-y\right)\end{matrix}\right.\)

Từ câu 1) ta có :

\(\sqrt{4\cos^2x.\cos^2y+\sin^2\left(x-y\right)}+\sqrt{4\sin^2x.\sin^2y+\sin^2\left(x-y\right)}\)

\(\ge\sqrt{\left(2\cos x.\cos y+2\sin x.\sin y\right)^2+\left(2\sin\left(x-y\right)\right)^2}\)

\(\ge\sqrt{4\cos^2\left(x-y\right)+4\sin^2\left(x-y\right)}=2\)

14 tháng 1 2020

@Akai Haruma

20 tháng 3 2020

Ta thấy : \(a^2\ge0\forall a\)

=> \(a^2+2\ge2\forall a\)

\(\sqrt{a^2+1}>0\)

=> \(\frac{a^2+2}{\sqrt{a^2+1}}\ge2\) ( đpcm )

20 tháng 3 2020

\(\begin{align} & \frac{{{a}^{2}}+2}{\sqrt{{{a}^{2}}+1}}\ge 2\forall a\in \mathbb{R} \\ & \Leftrightarrow {{a}^{2}}+2\ge 2\sqrt{{{a}^{2}}+1} \\ & \Leftrightarrow {{a}^{2}}-2\sqrt{{{a}^{2}}+1}+2\ge 0 \\ & \Leftrightarrow \left( {{a}^{2}}+1 \right)-2\sqrt{{{a}^{2}}+1}+1\ge 0 \\ & \Leftrightarrow {{\left( \sqrt{{{a}^{2}}+1}-1 \right)}^{2}}\ge 0 \text{(luôn đúng)} \\ \end{align} \)

NV
3 tháng 7 2020

\(P=\frac{a\left(\sqrt{\left(\sqrt{a-1}+1\right)^2}+\sqrt{\left(\sqrt{a-1}-1\right)^2}\right)}{\sqrt{\left(a-1\right)^2}}\)

\(=\frac{a\left(\sqrt{a-1}+1+\sqrt{a-1}-1\right)}{a-1}=\frac{2a\sqrt{a-1}}{a-1}=\frac{2a}{\sqrt{a-1}}\)

\(P-4=\frac{2a}{\sqrt{a-1}}-4=\frac{2\left(a-2\sqrt{a-1}\right)}{\sqrt{a-1}}=\frac{2\left(\sqrt{a-1}-1\right)^2}{\sqrt{a-1}}\ge0\)

\(\Rightarrow P\ge4\)