Cho tam giác ABC có Â < 900. Vẽ ra phía ngoài tam giác đó hai đoạn thẳng AD vuông góc và bằng AB; AE vuông góc và bằng AC. Gọi H trung điểm của BC .
Chứng minh rằng tia HA vuông góc với DE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xét tg AMC và tg ABN có
MA=BA(gt)
CA=AN(gt)
ˆMAC=ˆBAN(doˆMAB+ˆBAC=ˆNAC+ˆBAC)MAC^=BAN^(doMAB^+BAC^=NAC^+BAC^)
=>(kết luận)...
b)gọi I là giao điểm của MC và BN
gọi giao điểm của BA và MI là F
vì ΔAMC=ΔABNΔAMC=ΔABNnên
ˆFMA=ˆFBIFMA^=FBI^
mà ˆFMA+ˆFMB=45OFMA^+FMB^=45O
=>ˆFBI+ˆIMB=45OFBI^+IMB^=45O
Xét ΔIMBΔIMBcó góc ˆIMB+ˆMBI+ˆBIMIMB^+MBI^+BIM^= 180O
Mà ˆIMB+ˆMBIIMB^+MBI^=900
=>...
Có bài tương tự câu bạn hỏi , kham khảo nhé !
AH cắt DE tại F
Trên tia đối HA lấy N sao cho HA = HN
Ta có : AN cắt BC tại H
Mà H là trung điểm của AN và BC
\Rightarrow Tứ giác ACNB là hình bình hành
\Rightarrow AB // CN và CN = AB = AD
Ta có : ˆDAE+ˆEAC+ˆDAB+ˆBAC=360oDAE^+EAC^+DAB^+BAC^=360o
\Rightarrow ˆDAE+ˆBAC=360o−ˆEAC−ˆDAB=360o−90o−90o=180oDAE^+BAC^=360o−EAC^−DAB^=360o−90o−90o=180o
Mà ˆACN+ˆBAC=180oACN^+BAC^=180o ( trong cùng phía )
\Rightarrow ˆDAE=ˆACNDAE^=ACN^
Xét △△ DAE và △△ NCA có :
AE = AC