K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2023

\(\dfrac{n-8}{n+9}=1-\dfrac{17}{n+9}\)

Để \(n-8 \vdots n+9\) thì \(\dfrac{17}{n+9}\) là số nguyên

   \(=>n+9 \in Ư_{17}\)

  Mà \(Ư_{17}=\){\(\pm 1 ;\pm 17\)}

`@n+9=1=>n=-8`

`@n+9=-1=>n=-10`

`@n+9=17=>n=8`

`@n+9=-17=>n=-26`

5 tháng 10 2017

a) - Xét trường hợp chia hết cho 2

 + Vì n và n + 1 là hai số liên tiếp nên n.(n+1).(2n+1) chia hết cho 2.

- Xét trường hợp chia hết cho 3.

+ Nếu n chia hết cho 3 thì n.(n+1).(2n+1) chia hết cho 3

+ Nếu n chia 3 dư 1 thì 2n + 1 chia hết cho 3 => n.(n+1).(2n+1) chia hết cho 3.

+ Nếu n chia 3 dư 2 thì n + 1 chia hết cho 3 => n.(n+1).(2n+1) chia hết cho 3.

Vậy n.(n+1).(2n+1) chia hết cho 2.

Mà n.(n+1).(2n+1) chia hết cho 3 và 2 => n.(n+1).(2n+1) chia hết cho 6 (đpcm)

b) 10^9 + 2 = 100.....02.

Tổng các chữ số của số trên là: 1 + 0 + 0 + 0 +... + 0 + 2 = 3 => 10^9+2 chia hết cho 3(đpcm)

c) 10^10 - 1 = 99...99

Vì các chữ số của số trên đều là 9 => Nó chia hết cho 9 => 10^10 - 1 chia hết cho 9 (đpcm)

d) 10^8 - 1 = 99...9

Vì các chữ số của số trên đều là 9 => Nó chia hết cho 9 => 10^10 - 1 chia hết cho 9 (đpcm)

E) 10^8 + 8 = 10...08 

Tổng các chữ số của số trên là: 1 + 0 + 0 +... + 0 + 8 = 9 => Nó chia hết cho 9 => 10^8 + 8 chia hết cho 9 (đpcm)

Bài 1 :

a)

Chứng minh chiều \("\Rightarrow"\) :

Ta có : \(abcd⋮99\Rightarrow ab.100+cd⋮99\)

\(\Rightarrow99ab+ab+cd⋮99\)

Mà : \(99ab⋮99\Rightarrow ab+cd⋮99\) ( đpcm )

Chứng minh chiều \("\Leftarrow"\) :

Ta có : \(ab+cd⋮99\)

\(\Rightarrow99ab+ab+cd⋮99\)

\(\Rightarrow100ab+cd⋮99\)

hay : \(abcd⋮99\) ( đpcm )

b) Ta có :

\(abcd=1000a+100b+10c+d\)

\(=100ab+cd\)

\(=200cd+cd=201cd\)

\(201⋮67\Rightarrow ab=2cd⋮67\) ( đpcm )

c) Gọi số tự nhiên ba chữ số đó là \(aaa\)

Ta có : \(aaa=a.111=a.37.3⋮37\)

\(\Rightarrow\) Mọi số tự nhiên có 3 chữ số giống nhau đều chia hết cho 37 ( đpcm )

15 tháng 8 2019

mình sẽ vote cho 2 bạn đầu tiên . Thank you bạn

6 tháng 1 2017

mik cũng phải làm bài tập đó mà bạn

6 tháng 1 2017

bạn có học lớp 6b ko

13 tháng 11 2024

Muộn tận 7 năm:))

13 tháng 11 2024

Hi

6 tháng 12 2018

Ta có:

\(n=0\) thì \(10^n-1⋮9\)

\(n=1\) thì \(10^n-1⋮9\)

Giả sử \(10^n-1⋮9\) với \(n=k\),ta sẽ chứng minh điều đó cũng đúng với \(n=k+1\)

Thật vậy:

Với n=k+1 thì \(10^n-1=10^{k+1}-1=10^k.10-1=10.\left(10^k-1\right)+9⋮9\left(đpcm\right)\)

Câu sau tương tự thôi

3 tháng 11 2015

Toán chứng minh đúng không

14 tháng 10 2018

a,  3n + 6 chia hết cho n 
vì 3n chia hết cho n => để 3n + 6 chia hết cho n thì 6 phải chia hết cho n 
=>n ЄƯ {1;2;3;6}  vậy n = 1 ; 6 ;2;3

b, (5n-5)chia hết cho n

vì 5n chia hết cho n => để 5n - 5 chia hết cho n thì 5  phải chia hết cho n 
=>n Є {1;5}  vậy n = 1 ; 5 

15 tháng 10 2018

Để mk làm tiếp mấy bài còn lại nhé!

c) ta có: 3n + 9 chia hết cho n + 2

=> 3n + 6 + 3  chia hết cho n + 2

3.(n+2) + 3  chia hết cho n + 2

mà 3.(n+2)  chia hết cho n + 2

=> 3  chia hết cho n + 2

...

bn tự  làm tiếp nhé!

d) ta có: 4n + 8  chia hết cho n  - 2

=> 4n - 8 + 16  chia hết cho n  - 2

4.(n-2) + 16  chia hết cho n - 2

mà 4.(n-2)  chia hết cho n - 2

=> 16  chia hết cho n - 2

...

e) ta có: 3n + 8  chia hết cho 2n + 1

=> 2.(3n+8)  chia hết cho 2n + 1

6n + 16  chia hết cho 2n + 1

6n + 3 + 13  chia hết cho 2n + 1

3.(2n+1) + 13  chia hết cho 2n + 1

mà 3.(2n+1)  chia hết cho 2n + 1

=> 13  chia hết cho 2n + 1

...