tìm x thuộc Z để M= 1-2x / x+3 nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(M=\dfrac{x^2-3x+2x^2+6x-3x^2-9}{\left(x-3\right)\left(x+3\right)}=\dfrac{3}{x+3}\)
\(M=\frac{4x+5}{2x+1}=\frac{4x+2+3}{2x+1}=\frac{2\left(2x+1\right)+3}{2x+1}=\frac{2\left(2x+1\right)}{2x+1}+\frac{3}{2x+1}=2+\frac{3}{2x+1}\)
Để M là số nguyên thì \(\frac{3}{2x+1}\) là số nguyên
=>3 chia hết cho 2x+1
=>2x+1\(\inƯ\left(3\right)\)
=>2x+1\(\in\left\{-3;-1;1;3\right\}\)
=>2x\(\in\left\{-4;-2;0;2\right\}\)
=>x\(\in\left\{-2;-1;0;1\right\}\)
a: ĐKXĐ: x<>2; x<>3
\(Q=\dfrac{2x-9-x^2+9+2x^2-4x+x-2}{\left(x-3\right)\left(x-2\right)}\)
\(=\dfrac{x^2-x-2}{\left(x-3\right)\left(x-2\right)}=\dfrac{x+1}{x-3}\)
b: Để P<1 thì P-1<0
=>\(\dfrac{x+1-x+3}{x-3}< 0\)
=>x-3<0
=>x<3
\(a)\) Ta có :
\(M=\frac{2\left|x-3\right|}{x^2+2x-15}=\frac{2\left|x-3\right|}{\left(x^2+2x+1\right)-16}=\frac{2\left|x-3\right|}{\left(x+1\right)^2-16}=\frac{2\left|x-3\right|}{\left(x+1\right)^2-4^2}=\frac{2\left|x-3\right|}{\left(x+5\right)\left(x-3\right)}\)
+) Nếu \(x-3\ge0\) \(\Rightarrow\) \(x\ge3\) ta có :
\(M=\frac{2\left|x-3\right|}{\left(x+5\right)\left(x-3\right)}=\frac{2\left(x-3\right)}{\left(x+5\right)\left(x-3\right)}=\frac{2}{x+5}\)
+) Nếu \(x-3< 0\)\(\Rightarrow\)\(x< 3\) ta có :
\(M=\frac{2\left|x-3\right|}{\left(x+5\right)\left(x-3\right)}=\frac{-2\left(x-3\right)}{\left(x+5\right)\left(x-3\right)}=\frac{-2}{x+5}\)
Vậy : +) Nếu \(x\ge3\) thì \(M=\frac{2}{x+5}\)
+) Nếu \(x< 3\) thì \(M=\frac{-2}{x+5}\)
Chúc bạn học tốt ~
M=\(\frac{1-2x}{x+3}=\frac{-2x-6+7}{x+3}=\frac{-2\left(x+3\right)+7}{x+3}=-2+\frac{7}{x+3}\)
=> Để M nguyên thì 7 phải chia hết cho x+3 => x+3 ={-7; -1; 1; 7}
+/ x+3=-7 => x=-10
+/ x+3=-1 => x=-4
+/ x+3=1 => x=-2
+/ x+3=7 => x=4
ĐS: x={-10; -4; -2; 4}
\(M=\frac{1-2x}{x+3}=\frac{-\left(2x-1\right)}{x+3}=\frac{-\left[2\left(x+3\right)-7\right]}{x+3}=\frac{-2\left(x+3\right)+7}{x+3}=-2+\frac{7}{x+3}\)
Để \(-2+\frac{7}{x+3}\) là số nguyên <=> \(x+3\) thuộc ước của 7
=> Ư(7) = { - 7; - 1; 1; 7 }
Ta có : x + 3 = - 7 => x = - 7 - 3 = - 10 (TM)
x + 3 = - 1 => x = - 1 - 3 = - 4 (TM)
x + 3 = 1 => x = 1 - 3 = - 2 (TM)
x + 3 = 7 => x = 7 - 3 = 4 (TM)
Vậy x = { - 10; - 4; - 2; 4 } thì M là số nguyên