(2x2z2)3 + (-3xy3)2 =0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(c,=2x^3y^3-\dfrac{2}{3}x^4y+4x^2y^2\\ d,=3xy^3\left(4x^2-9\right)=12x^3y^3-27xy^3\)
c. \(\dfrac{2}{3x^2y}.\left(3xy^2-x^2+6y\right)\)
= \(\dfrac{2.3xy^2}{3x^2y}-\dfrac{2x^2}{3x^2y}+\dfrac{2.6y}{3x^2y}\)
= \(\dfrac{2y}{x}-\dfrac{2}{3y}+\dfrac{4}{x^2}\)
d. 3xy3(2x - 3)(2x + 3)
= (3x2y3 - 9xy3)(2x + 3)
= 6x3y3 - 92y3 - 18x2y3 - 27xy3
= 6x3y3 - 27x2y3 - 27xy3
\(A=3x^3y+6x^2y^2+3xy^3\\ A=3xy\left(x^2+2xy+y^2\right)\\ A=3xy\left(x+y\right)^2\)
Thay x = \(\dfrac{1}{2}\) , y = \(-\dfrac{1}{3}\)
\(A=3.\dfrac{1}{2}.-\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{3}\right)^2\\ A=-\dfrac{1}{2}.\dfrac{1}{36}\\ A=-\dfrac{1}{72}\)
\(A=3x^3y+6x^2y^2+3xy^3\)
\(=3xy\left(x^2+2xy+y^2\right)\)
\(=3xy\left(x+y\right)^2\)
Tại \(x=\dfrac{1}{2};y=-\dfrac{1}{3}\), \(A=3.\dfrac{1}{2}.\left(-\dfrac{1}{3}\right).\left(\dfrac{1}{2}-\dfrac{1}{3}\right)^2\)
\(=-\dfrac{1}{2}.\left(\dfrac{1}{6}\right)^2\)
\(=-\dfrac{1}{2}.\dfrac{1}{36}\)
\(=-\dfrac{1}{72}\)
\(3xy^3+6x^3y+xy=xy\left(3y^2+6x^2+1\right)\)
\(4x^3+8x^2+4x=4x\left(x^2+2x+1\right)=4x\left(x+1\right)^2\)
\(4x^2-4x+1-y^2=\left(2x-1\right)^2-y^2=\left(2x-1-y\right)\left(2x-1+y\right)\)
a: \(\left(2x+3y\right)\left(x-2y\right)-\dfrac{\left(4x^3y-6x^2y^2-3xy^3\right)}{2xy}\)
\(=2x^2-4xy+3xy-6y^2-\dfrac{2xy\cdot\left(2x^2-3xy-1,5y^2\right)}{2xy}\)
\(=2x^2-xy-6y^2-2x^2+3xy+1,5y^2\)
\(=2xy-4,5y^2\)
b: \(\left(x-2\right)^3-x\left(x+1\right)\left(x-1\right)-\left(3x-1\right)\left(3x-2\right)\)
\(=x^3-6x^2+12x-8-x\left(x^2-1\right)-\left(9x^2-6x-3x+2\right)\)
\(=x^3-6x^2+12x-8-x^3+x-9x^2+9x-2\)
\(=-15x^2+22x-10\)
j: \(\dfrac{10x^3-19x^2-4x+4}{2x+1}\)
\(=\dfrac{10x^3+5x^2-24x^2-12x+8x+4}{2x+1}\)
\(=5x^2-12x+4\)
a: \(3xy^3\cdot x^4y^2=3x^5y^2\)
b: \(\dfrac{4}{5}x^4y^2\cdot\left(-5\right)xy^3=-4x^5y^5\)
c: \(\dfrac{1}{7}x^2y\cdot\dfrac{2}{5}xy^4=\dfrac{2}{35}x^3y^5\)
a. 3xy3 . 2x4y
= 6x5y4
b. \(\dfrac{12}{15}x^4y^2.\left(-5\right)xy^3\)
= -4x5y5
c. \(\dfrac{-1}{7}x^2y.\dfrac{-2}{5}xy^4\)
= \(\dfrac{2}{35}x^3y^5\)
\(a,3xy^3-6xy^2+9x^2y^2=3xy^2\left(y-2+3x\right)\\ b,4x^2-y^2+10y-25=4x^2-\left(y^2-10y+25\right)=\left(2x\right)^2-\left(y-5\right)^2=\left(2x-y+5\right)\left(2x+y-5\right)\\ c,x^3-2x^2+x-4xy^2=x\left(x^2-2x+1-4y^2\right)=x\left[\left(x-1\right)^2-\left(2y\right)^2\right]=x\left(x-1-2y\right)\left(x-1+2y\right)\)
b: \(=\left(2x-y+5\right)\cdot\left(2x+y-5\right)\)
a)\(M+N=x^2y+0,5xy^3-7,5x^3y^2+x^3+3xy^3-x^2y+5,5x^3y^2=x^3+3,5xy^3-2x^3y^2\)b) \(P+Q=x^5+xy+0,3y^2-x^2y^3-2+x^2y^3+5-1,3y^2=x^5-y^2+xy+3\)