K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2023

Đề yêu cầu tìm `x,y` là số nguyên nhỉ?

`(x-2)(y+5)=7`

`(x-2)(y+5)=7.1=-7.(-1)`

`@x-2=7` và `y+5=1`

   `x=9`    và `y=-4`

`@x-2=1` và `y+5=7` 

   `x=3`     và `y=2`

`@x-2=-7` và `y+5=-1`

   `x=-5`      và `y=-6`

`@x-2=-1` và `y+5=-7`

   `x=1`      và `y=-12`

AH
Akai Haruma
Giáo viên
28 tháng 10 2021

Vì bài dài nên mình sẽ tách ra nhé.

1a. Ta có:

$x^2+y^2+z^2=(x+y+z)^2-2(xy+yz+xz)=-2(xy+yz+xz)$

$x^3+y^3+z^3=(x+y+z)^3-3(x+y)(y+z)(x+z)=-3(x+y)(y+z)(x+z)$

$=-3(-z)(-x)(-y)=3xyz$

$\Rightarrow \text{VT}=-30xyz(xy+yz+xz)(1)$

------------------------

$x^5+y^5=(x^2+y^2)(x^3+y^3)-x^2y^2(x+y)$

$=[(x+y)^2-2xy][(x+y)^3-3xy(x+y)]-x^2y^2(x+y)$

$=(z^2-2xy)(-z^3+3xyz)+x^2y^2z$

$=-z^5+3xyz^3+2xyz^3-6x^2y^2z+x^2y^2z$

$=-z^5+5xyz^3-5x^2y^2z$

$\Rightarrow 6(x^5+y^5+z^5)=6(5xyz^3-5x^2y^2z)$

$=30xyz(z^2-xy)=30xyz[z(-x-y)-xy]=-30xyz(xy+yz+xz)(2)$

Từ $(1);(2)$ ta có đpcm.

AH
Akai Haruma
Giáo viên
28 tháng 10 2021

1b.

$x^4+y^4=(x^2+y^2)^2-2x^2y^2=[(x+y)^2-2xy]^2-2x^2y^2$

$=(z^2-2xy)^2-2x^2y^2=z^4+2x^2y^2-4xyz^2$

$x^3+y^3=(x+y)^3-3xy(x+y)=-z^3+3xyz$

Do đó:

$x^7+y^7=(x^4+y^4)(x^3+y^3)-x^3y^3(x+y)$

$=(z^4+2x^2y^2-4xyz^2)(-z^3+3xyz)+x^3y^3z$

$=7x^3y^3z-14x^2y^2z^3+7xyz^5-z^7$

$\Rightarrow \text{VT}=7x^3y^3z-14x^2y^2z^3+7xyz^5$

$=7xyz(x^2y^2-2xyz^2+z^4)$

$=7xyz(xy-z^2)$

$=7xyz[xy+z(x+y)]^2=7xyz(xy+yz+xz)^2$

$=7xyz[x^2y^2+y^2z^2+z^2x^2+2xyz(x+y+z)]$

$=7xyz(x^2y^2+y^2z^2+z^2x^2)$ (đpcm)

 

 

7 tháng 6 2017

( 2 x y + 2/15 ) x 3 = 4/5

( 2 x y + 2/15 )      = 4/5 : 3 

( 2 x y + 2/15 )      =   4/15

 2 x y                    = 4/15 - 2/15 

2 x y                     =     2/15

     y                      =     2/15 :2 

   y                          =    1/15

7 tháng 6 2017

(2 x y + 2/15) x 3 = 4/5 

2 x y + 2/15) = 4/5 : 3 

2 x y + 2/15 = 4/15 

2 x y = 4/15 - 2/15 

2 x y = 2/15 

y = 2/15 : 2 

y = 1/15 

7/9 x (2 - 1/3 x y) = 14/15 

(2 - 1/3 x y) = 14/15 : 7/9 

(2 - 1/3 x y) = 6/5 

2 - y = 6/5 x 1/3 

2 - y = 2/5 

y = 2/5 + 2 

y = 12/5 

4/21 + 5 x y - 8/7 = 1/3 

4/21 + 5 x y = 1/3 + 8/7 

4/21 + 5 x y = 31/21 

5 x y = 31/21 - 4/21 

5 x y = 9/7 

y = 9/7 : 5 

y = 9/35 

7/12 x y - 3/12 x y = 5 

y x (7/12 - 3/12) = 5 

y x 1/3 = 5 

y = 5 : 1/3 

y = 15 

30 tháng 5 2021

1)\(\left(x+1\right).\left(y-2\right)=0\)                                       \(\left(x,y\inℤ\right)\)

\(\Rightarrow\orbr{\begin{cases}x+1=0\\y-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\y=2\end{cases}}\)

2)\(\left(x-5\right).\left(y-7\right)=1\)

x-51-1
y-71-1
x64
y86

3)\(\left(x+4\right).\left(y-2\right)=2\)

x+412-1-2
y-221-2-1
x-3-2-5-6
y4301

4)\(\left(x-4\right).\left(y+3\right)=-3\)

x-41-13-3
y+3-33-11
x5371
y-60-4-2

5)\(\left(x+3\right).\left(y-6\right)=-4\)

x+3-11-442-2
y-64-41-1-22
x-4-2-71-1-5
y1027548

6)\(\left(x-8\right).\left(y+7\right)=5\)

x-815-1-5
y+751-5-1
x91373
y-2-6-12-8

7)\(\left(x+7\right).\left(y-3\right)=-6\)

x+7-11-66-22-33
y-36-61-13-32-2
x-8-6-13-1-9-5-10-4
y9-3426051

8)\(\left(x-6\right).\left(y+2\right)=7\)

x-617-1-7
y+271-7-1
x7135-1
y5-1-9-3

ok :)

7 tháng 6 2016

đề bắt lm cái j v

8 tháng 6 2016

phan h da thuc thanh nhan tu

a: Đặt x/5=y/7=k

=>x=5k; y=7k

Ta có: xy=70

nên \(35k^2=70\)

\(\Leftrightarrow k^2=2\)

Trường hợp 1: \(k=\sqrt{2}\)

\(\Leftrightarrow x=5\sqrt{2};y=7\sqrt{2}\)

Trường hợp 2: \(k=-\sqrt{2}\)

\(\Leftrightarrow x=-5\sqrt{2};y=-7\sqrt{2}\)

b: Ta có: 5x=3y

nên x/3=y/5

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{2x-y}{2\cdot3-5}=11\)

Do đó: x=33; y=55

c: 7x=5y=140

=>x=20; y=28

d: Ta có: 2x=3y

nên x/3=y/2

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được;

\(\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{x-2y}{3-2\cdot2}=\dfrac{-7}{-1}=7\)

Do đó: x=21; y=14

a: =2(x-y)^3/(x-y)-7(x-y)^2/(x-y)+(x-y)/(x-y)

=2(x-y)^2-7(x-y)+1

b: =3(x-y)^5/5(x-y)^2-2(x-y)^4/5(x-y)^2+3(x-y)^2/5(x-y)^2

=3/5(x-y)^3-2/5(x-y)^2+3/5

21 tháng 6 2023

\(a,\)

\(\left[2\left(x-y\right)^3-7\left(y-x\right)^2-\left(y-x\right)\right]:\left(x-y\right)\)

\(=\left[2\left(x-y\right)^3-7\left(x-y\right)^2+\left(x-y\right)\right]:\left(x-y\right)\)

\(=\left\{\left(x-y\right)\left[2\left(x-y\right)^2-7\left(x-y\right)+1\right]\right\}:\left(x-y\right)\)

\(=2\left(x-y\right)^2-7\left(x-y\right)+1\)

\(b,\)

\(\left[3\left(x-y\right)^5-2\left(x-y\right)^4+3\left(x-y\right)^2\right]:\left[5\left(x-y\right)^2\right]\)

 

\(=\dfrac{3}{5}\left(x-y\right)^3-\dfrac{2}{5}\left(x-y\right)^2+\dfrac{3}{5}\)