K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2017

\(S=\sqrt{x-1}+\sqrt{9-x}\)

DK:\(1\le x\le9\)

\(S^2=\left(\sqrt{x-1}+\sqrt{9-x}\right)^2\)

\(S^2=\left(x-1\right)+\left(9-x\right)+2\sqrt{\left(x-1\right)\left(9-x\right)}\)

\(=8+2\sqrt{\left(x-1\right)\left(9-x\right)}\)

\(\le8+\left(x-1\right)+\left(9-x\right)\)(BDT AM-GM)

\(=8+8=16\Rightarrow S^2\le16\Rightarrow S\le4\)

12 tháng 7 2021

a) \(P=\dfrac{3x+3\sqrt{x}-9}{x+\sqrt{x}-2}+\dfrac{\sqrt{x}+3}{\sqrt{x}+2}-\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\left(x\ge0,x\ne1\right)\)

\(=\dfrac{3x+3\sqrt{x}-9}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}+3}{\sqrt{x}+2}-\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\)

\(=\dfrac{3x+3\sqrt{x}-9+\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{3x+5\sqrt{x}-8}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=\dfrac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+8\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=\dfrac{3\sqrt{x}+8}{\sqrt{x}+2}\)

b) \(P=\dfrac{3\sqrt{x}+8}{\sqrt{x}+2}=\dfrac{3\sqrt{x}+6+2}{\sqrt{x}+2}=3+\dfrac{2}{\sqrt{x}+2}\)

Để \(P\in Z\Rightarrow2⋮\sqrt{x}+2\Rightarrow\sqrt{x}+2=2\left(\sqrt{x}+2\ge2\right)\)

\(\Rightarrow x=0\)

c) Ta có: \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+2\ge2\Rightarrow\dfrac{2}{\sqrt{x}+2}\le1\Rightarrow3+\dfrac{2}{\sqrt{x}+2}\le4\)

\(\Rightarrow P_{max}=4\) khi \(x=0\)

1 tháng 7 2021

Ta có: \(x=9-4\sqrt{5}\)

⇔ \(\sqrt{x}=\sqrt{9-4\sqrt{5}}=\sqrt{5-4\sqrt{5}+4}\)

⇔ \(\sqrt{x}=\sqrt{\left(\sqrt{5}-2\right)^2}=\left|\sqrt{5}-2\right|\)

⇔ \(\sqrt{x}=\sqrt{5}-2\)   

Khi đó:    \(P=\dfrac{1-\sqrt{5}+2}{\sqrt{5}-2+2}=\dfrac{3-\sqrt{5}}{\sqrt{5}}\)

NV
19 giờ trước (21:32)

\(P=\sqrt{x}+\sqrt{9-x}+\sqrt{x\left(9-x\right)}\ge\sqrt{x}+\sqrt{9-x}\)

\(\Rightarrow P^2\ge\left(\sqrt{x}+\sqrt{9-x}\right)^2=9+2\sqrt{x\left(9-x\right)}\ge9\)

\(\Rightarrow P\ge3\)

\(P_{\min}=3\) khi x=0 hoặc x=9

\(P=\sqrt{x}+\sqrt{9-x}+\sqrt{x\left(9-x\right)}\le\sqrt{2\left(x+9-x\right)}+\frac12\left(x+9-x\right)=\frac92+3\sqrt2\)

\(P_{max}=\frac92+3\sqrt2\) khi \(x=9-x\Rightarrow x=\frac92\)

4 giờ trước (12:46)

Bước 1: Viết lại biểu thức cho dễ nhìn

\(P = \frac{x}{9 - x} + x \left(\right. 9 - x \left.\right)\)

Bước 2: Tìm đạo hàm của \(P\)

\(P = \frac{x}{9 - x} + x \left(\right. 9 - x \left.\right)\)

Đạo hàm từng phần:

  • Đạo hàm của \(\frac{x}{9 - x}\):

\(u = x , v = 9 - x \Rightarrow u^{'} = 1 , v^{'} = - 1\)\(\left(\left(\right. \frac{u}{v} \left.\right)\right)^{'} = \frac{u^{'} v - u v^{'}}{v^{2}} = \frac{1 \cdot \left(\right. 9 - x \left.\right) - x \cdot \left(\right. - 1 \left.\right)}{\left(\right. 9 - x \left.\right)^{2}} = \frac{9 - x + x}{\left(\right. 9 - x \left.\right)^{2}} = \frac{9}{\left(\right. 9 - x \left.\right)^{2}}\)

  • Đạo hàm của \(x \left(\right. 9 - x \left.\right) = 9 x - x^{2}\) là:

\(9 - 2 x\)

Vậy đạo hàm của \(P\) là:

\(P^{'} = \frac{9}{\left(\right. 9 - x \left.\right)^{2}} + 9 - 2 x\)

Bước 3: Tìm nghiệm của \(P^{'} = 0\)

\(\frac{9}{\left(\right. 9 - x \left.\right)^{2}} + 9 - 2 x = 0\)

Chuyển vế:

\(\frac{9}{\left(\right. 9 - x \left.\right)^{2}} = 2 x - 9\)

Lưu ý: Để vế phải \(2 x - 9\) dương (vì vế trái luôn dương), ta có:

\(2 x - 9 > 0 \Rightarrow x > \frac{9}{2} = 4.5\)

Nhân hai vế với \(\left(\right. 9 - x \left.\right)^{2}\):

\(9 = \left(\right. 2 x - 9 \left.\right) \left(\right. 9 - x \left.\right)^{2}\)

Đặt \(t = 9 - x\), khi \(x > 4.5 \Rightarrow t = 9 - x < 4.5\).

Thay \(x = 9 - t\):

\(9 = \left(\right. 2 \left(\right. 9 - t \left.\right) - 9 \left.\right) \cdot t^{2} = \left(\right. 18 - 2 t - 9 \left.\right) t^{2} = \left(\right. 9 - 2 t \left.\right) t^{2}\)

Ta có:

\(9 = \left(\right. 9 - 2 t \left.\right) t^{2} = 9 t^{2} - 2 t^{3}\)

Chuyển hết về một phía:

\(9 t^{2} - 2 t^{3} - 9 = 0\)

Hay:

\(- 2 t^{3} + 9 t^{2} - 9 = 0\)

Nhân cả phương trình với -1 để thuận tiện:

\(2 t^{3} - 9 t^{2} + 9 = 0\)


Bước 4: Giải phương trình \(2 t^{3} - 9 t^{2} + 9 = 0\)

Thử các nghiệm nguyên hoặc hữu tỉ:

  • \(t = 1\):

\(2 \left(\right. 1 \left.\right)^{3} - 9 \left(\right. 1 \left.\right)^{2} + 9 = 2 - 9 + 9 = 2 \neq 0\)

  • \(t = 3\):

\(2 \left(\right. 27 \left.\right) - 9 \left(\right. 9 \left.\right) + 9 = 54 - 81 + 9 = - 18 \neq 0\)

  • \(t = 4.5\):

\(2 \left(\right. 4.5 \left.\right)^{3} - 9 \left(\right. 4.5 \left.\right)^{2} + 9 = 2 \cdot 91.125 - 9 \cdot 20.25 + 9 = 182.25 - 182.25 + 9 = 9 \neq 0\)

  • \(t = 2\):

\(2 \left(\right. 8 \left.\right) - 9 \left(\right. 4 \left.\right) + 9 = 16 - 36 + 9 = - 11 \neq 0\)

Không tìm được nghiệm nguyên, dùng phương pháp đồ thị hoặc nghiệm gần đúng.


Bước 5: Tính giá trị gần đúng nghiệm \(t\)

Ta có hàm:

\(f \left(\right. t \left.\right) = 2 t^{3} - 9 t^{2} + 9\)

  • \(f \left(\right. 2 \left.\right) = - 11\) (âm)
  • \(f \left(\right. 3 \left.\right) = 2 \cdot 27 - 9 \cdot 9 + 9 = 54 - 81 + 9 = - 18\) (âm, chỉnh lại ở trên bị sai, đúng là -18)
  • \(f \left(\right. 4 \left.\right) = 2 \cdot 64 - 9 \cdot 16 + 9 = 128 - 144 + 9 = - 7\) (âm)
  • \(f \left(\right. 5 \left.\right) = 2 \cdot 125 - 9 \cdot 25 + 9 = 250 - 225 + 9 = 34\) (dương)

Vậy nghiệm nằm trong khoảng \(\left(\right. 4 , 5 \left.\right)\).

Tiếp tục thử \(t = 4.5\):

\(f \left(\right. 4.5 \left.\right) = 2 \cdot 91.125 - 9 \cdot 20.25 + 9 = 182.25 - 182.25 + 9 = 9 > 0\)

Có vẻ trước đó tính sai, ta kiểm tra lại:

\(t = 4.25 \Rightarrow f \left(\right. 4.25 \left.\right) = 2 \cdot \left(\right. 4.25 \left.\right)^{3} - 9 \cdot \left(\right. 4.25 \left.\right)^{2} + 9\)\(\left(\right. 4.25 \left.\right)^{3} = 76.765625 , \left(\right. 4.25 \left.\right)^{2} = 18.0625\)\(f \left(\right. 4.25 \left.\right) = 2 \cdot 76.765625 - 9 \cdot 18.0625 + 9 = 153.53125 - + 9 = - 0.03125\)

Gần bằng 0, nghiệm ở gần \(4.25\).


Bước 6: Tính nghiệm x

\(t \approx 4.25 \Rightarrow x = 9 - t = 9 - 4.25 = 4.75\)


Bước 7: Tính giá trị \(P\) tại \(x = 4.75\)

\(P = \frac{4.75}{9 - 4.75} + 4.75 \left(\right. 9 - 4.75 \left.\right) = \frac{4.75}{4.25} + 4.75 \times 4.25\)\(\frac{4.75}{4.25} \approx 1.1176 , 4.75 \times 4.25 = 20.1875\)\(P \approx 1.1176 + 20.1875 = 21.3051\)


Bước 8: Xét giới hạn tại biên \(x \rightarrow 0^{+}\) và \(x \rightarrow 9^{-}\)

  • Khi \(x \rightarrow 0^{+}\):

\(P \rightarrow \frac{0}{9} + 0 \times 9 = 0\)

  • Khi \(x \rightarrow 9^{-}\):

\(\frac{x}{9 - x} \rightarrow + \infty , x \left(\right. 9 - x \left.\right) \rightarrow 0\)

Nên \(P \rightarrow + \infty\).


Kết luận:

  • \(P\) có một điểm cực trị tại \(x \approx 4.75\) với giá trị \(P \approx 21.3\).
  • \(P \rightarrow + \infty\) khi \(x \rightarrow 9^{-}\).
  • \(P \rightarrow 0\) khi \(x \rightarrow 0^{+}\).

Vì \(P \rightarrow + \infty\) gần biên \(x \rightarrow 9^{-}\), nên không có GTLN hữu hạn trên khoảng \(\left(\right. 0 , 9 \left.\right)\).

Còn GTNN là khoảng \(x \rightarrow 0\) hoặc tại cực trị \(x = 4.75\).

a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne9\end{matrix}\right.\)

Ta có: \(A=\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\)

\(=\dfrac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{3}{\sqrt{x}+3}\)

b: Thay x=16 vào A, ta được:

\(A=\dfrac{3}{4+3}=\dfrac{3}{7}\)

30 tháng 8 2021

các câu ở dưới nữa ah

1 tháng 4 2022

giải bằng Bunhiaskopki nha bạn, search gg

1 tháng 4 2022

Ta có P \(\le\dfrac{1^2+\left(\sqrt{x-1}\right)^2}{2}+\dfrac{2^2+\left(\sqrt{y-4}\right)^2}{2}+\dfrac{3^2+\left(\sqrt{z-9}\right)^2}{2}\)

\(=\dfrac{1+x-1+4+y-4+9+z-9}{2}=\dfrac{x+y+z}{2}=\dfrac{28}{2}=14\)

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}1=\sqrt{x-1}\\2=\sqrt{y-4}\\3=\sqrt{z-9}\end{matrix}\right.\Leftrightarrow x=2;y=8;z=18\)(tm)