Tìm GTLN của S = \(\sqrt{x-1}\)+ \(\sqrt{9-x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) \(P=\dfrac{3x+3\sqrt{x}-9}{x+\sqrt{x}-2}+\dfrac{\sqrt{x}+3}{\sqrt{x}+2}-\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\left(x\ge0,x\ne1\right)\)
\(=\dfrac{3x+3\sqrt{x}-9}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}+3}{\sqrt{x}+2}-\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\)
\(=\dfrac{3x+3\sqrt{x}-9+\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{3x+5\sqrt{x}-8}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=\dfrac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+8\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=\dfrac{3\sqrt{x}+8}{\sqrt{x}+2}\)
b) \(P=\dfrac{3\sqrt{x}+8}{\sqrt{x}+2}=\dfrac{3\sqrt{x}+6+2}{\sqrt{x}+2}=3+\dfrac{2}{\sqrt{x}+2}\)
Để \(P\in Z\Rightarrow2⋮\sqrt{x}+2\Rightarrow\sqrt{x}+2=2\left(\sqrt{x}+2\ge2\right)\)
\(\Rightarrow x=0\)
c) Ta có: \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+2\ge2\Rightarrow\dfrac{2}{\sqrt{x}+2}\le1\Rightarrow3+\dfrac{2}{\sqrt{x}+2}\le4\)
\(\Rightarrow P_{max}=4\) khi \(x=0\)

\(P=\sqrt{x}+\sqrt{9-x}+\sqrt{x\left(9-x\right)}\ge\sqrt{x}+\sqrt{9-x}\)
\(\Rightarrow P^2\ge\left(\sqrt{x}+\sqrt{9-x}\right)^2=9+2\sqrt{x\left(9-x\right)}\ge9\)
\(\Rightarrow P\ge3\)
\(P_{\min}=3\) khi x=0 hoặc x=9
\(P=\sqrt{x}+\sqrt{9-x}+\sqrt{x\left(9-x\right)}\le\sqrt{2\left(x+9-x\right)}+\frac12\left(x+9-x\right)=\frac92+3\sqrt2\)
\(P_{max}=\frac92+3\sqrt2\) khi \(x=9-x\Rightarrow x=\frac92\)
Bước 1: Viết lại biểu thức cho dễ nhìn
\(P = \frac{x}{9 - x} + x \left(\right. 9 - x \left.\right)\)
Bước 2: Tìm đạo hàm của \(P\)
\(P = \frac{x}{9 - x} + x \left(\right. 9 - x \left.\right)\)
Đạo hàm từng phần:
- Đạo hàm của \(\frac{x}{9 - x}\):
\(u = x , v = 9 - x \Rightarrow u^{'} = 1 , v^{'} = - 1\)\(\left(\left(\right. \frac{u}{v} \left.\right)\right)^{'} = \frac{u^{'} v - u v^{'}}{v^{2}} = \frac{1 \cdot \left(\right. 9 - x \left.\right) - x \cdot \left(\right. - 1 \left.\right)}{\left(\right. 9 - x \left.\right)^{2}} = \frac{9 - x + x}{\left(\right. 9 - x \left.\right)^{2}} = \frac{9}{\left(\right. 9 - x \left.\right)^{2}}\)
- Đạo hàm của \(x \left(\right. 9 - x \left.\right) = 9 x - x^{2}\) là:
\(9 - 2 x\)
Vậy đạo hàm của \(P\) là:
\(P^{'} = \frac{9}{\left(\right. 9 - x \left.\right)^{2}} + 9 - 2 x\)
Bước 3: Tìm nghiệm của \(P^{'} = 0\)
\(\frac{9}{\left(\right. 9 - x \left.\right)^{2}} + 9 - 2 x = 0\)
Chuyển vế:
\(\frac{9}{\left(\right. 9 - x \left.\right)^{2}} = 2 x - 9\)
Lưu ý: Để vế phải \(2 x - 9\) dương (vì vế trái luôn dương), ta có:
\(2 x - 9 > 0 \Rightarrow x > \frac{9}{2} = 4.5\)
Nhân hai vế với \(\left(\right. 9 - x \left.\right)^{2}\):
\(9 = \left(\right. 2 x - 9 \left.\right) \left(\right. 9 - x \left.\right)^{2}\)
Đặt \(t = 9 - x\), khi \(x > 4.5 \Rightarrow t = 9 - x < 4.5\).
Thay \(x = 9 - t\):
\(9 = \left(\right. 2 \left(\right. 9 - t \left.\right) - 9 \left.\right) \cdot t^{2} = \left(\right. 18 - 2 t - 9 \left.\right) t^{2} = \left(\right. 9 - 2 t \left.\right) t^{2}\)
Ta có:
\(9 = \left(\right. 9 - 2 t \left.\right) t^{2} = 9 t^{2} - 2 t^{3}\)
Chuyển hết về một phía:
\(9 t^{2} - 2 t^{3} - 9 = 0\)
Hay:
\(- 2 t^{3} + 9 t^{2} - 9 = 0\)
Nhân cả phương trình với -1 để thuận tiện:
\(2 t^{3} - 9 t^{2} + 9 = 0\)
Bước 4: Giải phương trình \(2 t^{3} - 9 t^{2} + 9 = 0\)
Thử các nghiệm nguyên hoặc hữu tỉ:
- \(t = 1\):
\(2 \left(\right. 1 \left.\right)^{3} - 9 \left(\right. 1 \left.\right)^{2} + 9 = 2 - 9 + 9 = 2 \neq 0\)
- \(t = 3\):
\(2 \left(\right. 27 \left.\right) - 9 \left(\right. 9 \left.\right) + 9 = 54 - 81 + 9 = - 18 \neq 0\)
- \(t = 4.5\):
\(2 \left(\right. 4.5 \left.\right)^{3} - 9 \left(\right. 4.5 \left.\right)^{2} + 9 = 2 \cdot 91.125 - 9 \cdot 20.25 + 9 = 182.25 - 182.25 + 9 = 9 \neq 0\)
- \(t = 2\):
\(2 \left(\right. 8 \left.\right) - 9 \left(\right. 4 \left.\right) + 9 = 16 - 36 + 9 = - 11 \neq 0\)
Không tìm được nghiệm nguyên, dùng phương pháp đồ thị hoặc nghiệm gần đúng.
Bước 5: Tính giá trị gần đúng nghiệm \(t\)
Ta có hàm:
\(f \left(\right. t \left.\right) = 2 t^{3} - 9 t^{2} + 9\)
- \(f \left(\right. 2 \left.\right) = - 11\) (âm)
- \(f \left(\right. 3 \left.\right) = 2 \cdot 27 - 9 \cdot 9 + 9 = 54 - 81 + 9 = - 18\) (âm, chỉnh lại ở trên bị sai, đúng là -18)
- \(f \left(\right. 4 \left.\right) = 2 \cdot 64 - 9 \cdot 16 + 9 = 128 - 144 + 9 = - 7\) (âm)
- \(f \left(\right. 5 \left.\right) = 2 \cdot 125 - 9 \cdot 25 + 9 = 250 - 225 + 9 = 34\) (dương)
Vậy nghiệm nằm trong khoảng \(\left(\right. 4 , 5 \left.\right)\).
Tiếp tục thử \(t = 4.5\):
\(f \left(\right. 4.5 \left.\right) = 2 \cdot 91.125 - 9 \cdot 20.25 + 9 = 182.25 - 182.25 + 9 = 9 > 0\)
Có vẻ trước đó tính sai, ta kiểm tra lại:
\(t = 4.25 \Rightarrow f \left(\right. 4.25 \left.\right) = 2 \cdot \left(\right. 4.25 \left.\right)^{3} - 9 \cdot \left(\right. 4.25 \left.\right)^{2} + 9\)\(\left(\right. 4.25 \left.\right)^{3} = 76.765625 , \left(\right. 4.25 \left.\right)^{2} = 18.0625\)\(f \left(\right. 4.25 \left.\right) = 2 \cdot 76.765625 - 9 \cdot 18.0625 + 9 = 153.53125 - + 9 = - 0.03125\)
Gần bằng 0, nghiệm ở gần \(4.25\).
Bước 6: Tính nghiệm x
\(t \approx 4.25 \Rightarrow x = 9 - t = 9 - 4.25 = 4.75\)
Bước 7: Tính giá trị \(P\) tại \(x = 4.75\)
\(P = \frac{4.75}{9 - 4.75} + 4.75 \left(\right. 9 - 4.75 \left.\right) = \frac{4.75}{4.25} + 4.75 \times 4.25\)\(\frac{4.75}{4.25} \approx 1.1176 , 4.75 \times 4.25 = 20.1875\)\(P \approx 1.1176 + 20.1875 = 21.3051\)
Bước 8: Xét giới hạn tại biên \(x \rightarrow 0^{+}\) và \(x \rightarrow 9^{-}\)
- Khi \(x \rightarrow 0^{+}\):
\(P \rightarrow \frac{0}{9} + 0 \times 9 = 0\)
- Khi \(x \rightarrow 9^{-}\):
\(\frac{x}{9 - x} \rightarrow + \infty , x \left(\right. 9 - x \left.\right) \rightarrow 0\)
Nên \(P \rightarrow + \infty\).
Kết luận:
- \(P\) có một điểm cực trị tại \(x \approx 4.75\) với giá trị \(P \approx 21.3\).
- \(P \rightarrow + \infty\) khi \(x \rightarrow 9^{-}\).
- \(P \rightarrow 0\) khi \(x \rightarrow 0^{+}\).
Vì \(P \rightarrow + \infty\) gần biên \(x \rightarrow 9^{-}\), nên không có GTLN hữu hạn trên khoảng \(\left(\right. 0 , 9 \left.\right)\).
Còn GTNN là khoảng \(x \rightarrow 0\) hoặc tại cực trị \(x = 4.75\).

a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne9\end{matrix}\right.\)
Ta có: \(A=\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\)
\(=\dfrac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{3}{\sqrt{x}+3}\)
b: Thay x=16 vào A, ta được:
\(A=\dfrac{3}{4+3}=\dfrac{3}{7}\)

Ta có P \(\le\dfrac{1^2+\left(\sqrt{x-1}\right)^2}{2}+\dfrac{2^2+\left(\sqrt{y-4}\right)^2}{2}+\dfrac{3^2+\left(\sqrt{z-9}\right)^2}{2}\)
\(=\dfrac{1+x-1+4+y-4+9+z-9}{2}=\dfrac{x+y+z}{2}=\dfrac{28}{2}=14\)
Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}1=\sqrt{x-1}\\2=\sqrt{y-4}\\3=\sqrt{z-9}\end{matrix}\right.\Leftrightarrow x=2;y=8;z=18\)(tm)
\(S=\sqrt{x-1}+\sqrt{9-x}\)
DK:\(1\le x\le9\)
\(S^2=\left(\sqrt{x-1}+\sqrt{9-x}\right)^2\)
\(S^2=\left(x-1\right)+\left(9-x\right)+2\sqrt{\left(x-1\right)\left(9-x\right)}\)
\(=8+2\sqrt{\left(x-1\right)\left(9-x\right)}\)
\(\le8+\left(x-1\right)+\left(9-x\right)\)(BDT AM-GM)
\(=8+8=16\Rightarrow S^2\le16\Rightarrow S\le4\)