x3y5+x3y53+x3y55+x3y57+...+(2k-1)=3249x3y5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$B=\frac{1}{4}.(-2).3.(x^3.x^3)(y.y^5.y).z^3$
$=\frac{-3}{2}x^6y^7z^3$
Bậc của $B$: $6+7+3=16$
Có: \(\dfrac{M_X}{M_X+2.M_Y}.100\%=30,4\%\)
=> MX = 0,304.MX + 0,608.MY
=> \(M_X=\dfrac{76}{87}M_Y\)
CTHH: XxYy
Có \(\dfrac{x.M_X}{x.M_X+y.M_Y}.100\%=25,8\%\)
=> \(\dfrac{x.\dfrac{76}{87}M_Y}{x.\dfrac{76}{87}M_Y+y.M_Y}=0,258\)
=> \(\dfrac{\dfrac{76x}{87}}{\dfrac{76x}{87}+y}=0,258\)
=> \(\dfrac{76}{87}x=\dfrac{817}{3625}x+0,258y\)
=> \(\dfrac{x}{y}=\dfrac{2}{5}\)
=> CTHH: X2Y5
=> B
theo mình thế này mới đúng
Vì a < b và a và b là 2 số tự nhiên liên tiếp => b = a + 1
Gọi ƯCLN(a,b) = d
=> \(\begin{cases}a⋮d\\b⋮d\end{cases}=>\orbr{\begin{cases}a⋮d\\a+1⋮d\end{cases}}\)
=> \(a+1-a⋮d=>1⋮d\)
=> \(d\inƯ\left(1\right)=>d=1\)
Vì (a,b) = 1 => a và b là 2 số nguyên tố cùng nhau
Đề sai rồi:
Thay n=2k vào pt trên ta đc:
(n+1)(n-1)(n+3)=(n+4)(n+2)(n+3)
=>(n+1)(n-1)=(n+4)(n+2) (sai rồi)
Gọi d=UCLN(2k-1;2k+1)
\(\Leftrightarrow2k+1-2k+1⋮d\)
=>2⋮d
mà 2k+1 là số lẻ
nên d=1
=>UCLN(2k-1;2k+1)=1
K = 3249 bạn nhé
làm ơn ghi cách giải hộ mình với