K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2022

\(A=7+7^2+7^3+...+7^{120}\\ A=\left(7+7^2+7^3\right)+...+\left(7^{118}+7^{119}+7^{120}\right)\\ A=7\times\left(1+7+7^2\right)+...+7^{118}\times\left(1+7+7^2\right)\\ A=7\times57+7^4\times57+...+7^{118}\times57\\ A=57\times\left(7+7^4+...+7^{118}\right)\\ \Rightarrow A⋮57\)

28 tháng 12 2024

A = 7 + 72 + 73 + ... + 7119 + 7120

A = (71 + 72 + 73) + (74 + 75 + 76) + ... + (7118 + 7119 + 7120)

A = 7(1 + 7 + 72) + 74(1 + 7 + 72) + ... + 7118(1 + 7 + 72)

A = 7.57 + 74.57 + ... + 7118.57

A = 57(7 + 74 + ... + 7118)

Vì 57 ⋮ 57 nên 57(7 + 74 + ... + 7118) ⋮ 57

23 tháng 12 2021

\(A=7\left(1+7+7^2\right)+7^4\left(1+7+7^2\right)+...+7^{118}\left(1+7+7^2\right)=7.57+7^4.57+...+7^{118}.57=57\left(7+7^4+...+7^{118}\right)⋮57\)

AH
Akai Haruma
Giáo viên
23 tháng 12 2021

Lời giải:
$A=(7+7^2+7^3)+(7^4+7^5+7^6)+....+(7^{118}+7^{119}+7^{120})$
$=7(1+7+7^2)+7^4(1+7+7^2)+...+7^{118}(1+7+7^2)$

$=7.57+7^4.57+...+7^{118}.57$

$=57(7+7^4+...+7^{118})\vdots 57$ 

Ta có đpcm.

28 tháng 12 2024

A = 7 + 72 + 73 + ... + 7119 + 7120

A = (71 + 72 + 73) + (74 + 75 + 76) + ... + (7118 + 7119 + 7120)

A = 7(1 + 7 + 72) + 74(1 + 7 + 72) + ... + 7118(1 + 7 + 72)

A = 7.57 + 74.57 + ... + 7118.57

A = 57(7 + 74 + ... + 7118)

Vì 57 ⋮ 57 nên 57(7 + 74 + ... + 7118) ⋮ 57

7 tháng 11 2021

 á à thg hếu cx hỏi trên này cơ à XDDD

 

7 tháng 11 2021

bn k trả lời đc thì thoi, cứ smap báo cáo h!

28 tháng 12 2022

Ta xét biểu thức \(A_1=7+7^2+7^3\) \(=7\left(1+7+7^2\right)\) \(=57.7⋮57\)

\(A_2=7^4+7^5+7^6\) \(=7^4\left(1+7+7^2\right)\) \(=57.7^4⋮57\)

...

\(A_{40}=7^{118}+7^{119}+7^{120}\) \(=7^{118}\left(1+7+7^2\right)⋮57\)

Vậy \(A=\sum\limits^{40}_{i=1}A_i\) đương nhiên chia hết cho 57 (đpcm)

28 tháng 12 2022

bài kt cuối kì phải tự làm  bạn ơi

15 tháng 10 2021

b) Để 4x + 19 chia hết cho x + 1 thì 15 chia hết cho x + 1

--> x + 1 là ước của 15

TH1: x + 1 = 15 <=> x = 14

TH2: x + 1 = 1 <=> x = 0

TH3: x + 1 = 3 <=> x = 2

TH4: x + 1 = 5 <=> x= 4

12 tháng 12 2021

Bài 1:

\(a,A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\\ A=\left(1+2\right)\left(2+2^3+...+2^{2009}\right)=3\left(2+...+2^{2009}\right)⋮3\\ A=\left(2+2^2+2^3\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\\ A=\left(1+2+2^2\right)\left(2+...+2^{2008}\right)=7\left(2+...+2^{2008}\right)⋮7\)

\(b,\left(\text{sửa lại đề}\right)B=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\\ B=\left(1+3\right)\left(3+3^3+...+3^{2009}\right)=4\left(3+3^3+...+3^{2009}\right)⋮4\\ B=\left(3+3^2+3^3\right)+...+\left(3^{2008}+3^{2009}+3^{2010}\right)\\ B=\left(1+3+3^2\right)\left(3+...+3^{2008}\right)=13\left(3+...+3^{2008}\right)⋮13\)

12 tháng 12 2021

Bài 2:

\(a,\Rightarrow2A=2+2^2+...+2^{2012}\\ \Rightarrow2A-A=2+2^2+...+2^{2012}-1-2-2^2-...-2^{2011}\\ \Rightarrow A=2^{2012}-1>2^{2011}-1=B\\ b,A=\left(2020-1\right)\left(2020+1\right)=2020^2-2020+2020-1=2020^2-1< B\)

19 tháng 11 2022

a: \(B=3^1+3^2+...+3^{2010}\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)

\(=4\left(3+3^3+...+3^{2009}\right)⋮4\)

\(B=3\left(1+3+3^2\right)+...+3^{2008}\left(1+3+3^2\right)\)

\(=13\left(3+...+3^{2008}\right)⋮13\)

b: \(C=5^1+5^2+...+5^{2010}\)

\(=5\left(1+5\right)+...+5^{2009}\left(1+5\right)\)

\(=6\left(5+...+5^{2009}\right)⋮6\)

\(C=5\left(1+5+5^2\right)+...+5^{2008}\left(1+5+5^2\right)\)

\(=31\left(5+...+5^{2008}\right)⋮31\)

c: \(D=7\left(1+7\right)+...+7^{2009}\left(1+7\right)\)

\(=8\left(7+...+7^{2009}\right)⋮8\)

\(D=7\left(1+7+7^2\right)+...+7^{2008}\left(1+7+7^2\right)\)

\(=57\left(7+...+7^{2008}\right)⋮57\)

7 tháng 9 2023

Để chứng minh S chia hết cho 2 và S chia hết cho 57, ta sẽ xem xét từng thành phần trong công thức của S.

Đầu tiên, ta xét dãy từ 71 đến 72025. Trong dãy này, có 72025 - 71 + 1 = 71955 số.

Ta biết rằng nếu một số chia hết cho 2, thì số đó là số chẵn. Trong dãy từ 71 đến 72025, ta có 2 số lẻ liên tiếp (71 và 72), sau đó là 2 số chẵn liên tiếp (73 và 74), và tiếp tục lặp lại quy luật này. Vì vậy, trong 71955 số này, ta có 71955/2 = 35977.5 cặp số chẵn và lẻ.

Do đó, tổng của các số chẵn trong dãy này là 35977.5 * 2 = 71955.

Tiếp theo, ta xét số 72024. Ta biết rằng 72024 chia hết cho 2.

Cuối cùng, ta xét số 72025. Ta biết rằng 72025 chia hết cho 57, vì 72025 = 57 * 1265.

Vậy tổng S chia hết cho 2 và chia hết cho 57.

8 tháng 10 2016

A=7+72+73+...+72016

=(7+72)+(73+74)+...+(72015+72016)

=7.(1+7)+73.(1+8)+...+72015.(1+7)

=7.8+73.8+...+72015.8

=8.(7+73+...+72015) chia hết cho 8 (đpcm)

A=7+72+73+...+72016

=(7+72+73)+...+(72014+72015+72016)

=7.(1+7+72)+...+72014.(1+7+72)

=7.57+...+72014.57

=57.(7+...+72014) chia hết cho 57 (đpcm)