Cho x+y=9,x.y=14 tính
a,x-y b,x2+y2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có HPT:
\(\left\{{}\begin{matrix}x-y=5\\xy=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}xy-y^2=5y\\xy=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y^2=-6-5y\\xy=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-2\\x=3\end{matrix}\right.\)
Thay x = -2, y = 3 vào, ta được:
A = (-2)3 - 33 - (-2)2 + 2.(-2).3 - 32
A = -8 - 27 - 4 + (-12) - 9
A = -60
Sửa:
Ta có HPT:
\(\left\{{}\begin{matrix}x-y=-5\\xy=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}xy-y^2=-5y\\xy=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y^2=-6-\left(-5y\right)\\xy=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=-3\end{matrix}\right.\)
Thay x = -3, y = 2 vào, ta được:
A = (-3)3 - 23 - (-3)2 + 2.(-3).2 - 22
A = -27 - 8 - 9 + (-12) - 4
A = -60
\(1,\\ a,\dfrac{x^2}{x+1}+\dfrac{x}{x+1}=\dfrac{x^2+x}{x+1}=\dfrac{x\left(x+1\right)}{x+1}=x\)
\(b,\left(\dfrac{2xy}{x^2-y^2}+\dfrac{x-y}{2x+2y}\right):\dfrac{x+y}{2x}=\left(\dfrac{4xy}{2\left(x-y\right)\left(x+y\right)}+\dfrac{\left(x-y\right)^2}{2\left(x-y\right)\left(x+y\right)}\right).\dfrac{2x}{x+y}=\dfrac{4xy+x^2-2xy+y^2}{2\left(x-y\right)\left(x+y\right)}.\dfrac{2x}{x+y}=\dfrac{2x\left(x^2+2xy+y^2\right)}{2\left(x-y\right)\left(x+y\right)^2}=\dfrac{2x\left(x+y\right)^2}{2\left(x-y\right)\left(x+y\right)^2}=\dfrac{x}{x-y}\)
A, B thuộc (P), (d) ?
Phương trình hoành độ giao điểm của (P) và (d) là:
\(x^2=k\left(x-1\right)+2\Leftrightarrow x^2-kx+\left(k-2\right)=0\).
Ta có \(\Delta=k^2-4\left(k-2\right)=\left(k-2\right)^2+2>0\forall k\) nên phương trình trên luôn có hai nghiệm phân biệt.
Theo hệ thức Viète ta có \(\left\{{}\begin{matrix}x_1x_2=k-2\\x_1+x_2=k\end{matrix}\right.\).
Ta có \(x_1^2+y_1+x_2^2+y_2=14\)
\(\Leftrightarrow2x_1^2+2x_2^2=14\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=7\)
\(\Leftrightarrow k^2-2\left(k-2\right)=7\Leftrightarrow k^2-2k-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}k=-1\\k=3\end{matrix}\right.\).
Vậy...
a/ (x + y)2 = 92 = 81 = x2 + 2xy + y2 = x2 + 28 + y2 => x2 + y2 = 53
x2 - 2xy + y2 = 53 - 28 = 25 = (x - y)2 => x - y = 5
b/ x3 + y3 = (x + y) (x2 - xy + y2) = 9 (53 - 14) = 351
Theo đề bài ta có:
;
cân bằng phương trình bằng cách nhân x vào cả hai vế ta có:
cân bằng phương trình bằng cách nhân y vào cả hai vế ta có:
cân bằng phương trình bằng cách nhân z vào cả hai vế ta có:
vì
Vì Có cùng số mũ và bằng nhau
Nên các cơ số cũng bằng nhau
Ta có: \(x^2=y\cdot z\)
nên \(z=\dfrac{x^2}{y}\)(1)
Ta có: \(y^2=z\cdot x\)
nên \(z=\dfrac{y^2}{x}\)(2)
Từ (1) và (2) suy ra \(\dfrac{x^2}{y}=\dfrac{y^2}{x}\)
\(\Leftrightarrow x^3=y^3\)
hay x=y(3)
Ta có: \(x^2=y\cdot z\)
nên \(y=\dfrac{x^2}{z}\)(4)
Ta có: \(z^2=x\cdot y\)
nên \(y=\dfrac{z^2}{x}\)(5)
Từ (4) và (5) suy ra \(\dfrac{x^2}{z}=\dfrac{z^2}{x}\)
\(\Leftrightarrow x^3=z^3\)
hay x=z(6)
Từ (3) và (6) suy ra x=y=z(đpcm)
a) x + y = 9 và xy = 14
=>x = 9 - y
(9 - y)y = 14
Từ đó giải ra x = 2 và y = 7 hoặc ngược lại.
b) x^2 + y^2 = 2^2 + 7^2 = 4 + 49 = 54