Cho A=(-3x^5y^3)^4
B=(2x^2z^4)
Tìm x,y,z biết A+B=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
A + B = 81x20y12 + 32x10z20
vì 81x20y12 \(\ge\)0 ; 32x10z20 \(\ge\)0
nên A + b = 0 \(\Leftrightarrow\)\(\hept{\begin{cases}x^{20}y^{12}=0\\x^{10}z^{20}=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=0\\y=z=0\end{cases}}\)
A=(-3x\(^5\)y\(^3\))\(^4\)
B=(2x\(^2\)z\(^4\))\(^5\)
Day moi la de dung de cua cau thieu roi day
A+B=81x\(^{20}\)y\(^{12}\)+32x\(^{10}\)z\(^{20}\)
vi 81x\(^{20}\)y\(^{12}\)>0;32x\(^{10}\)z\(^{20}\)>0
nen A+B=0 <=>x\(^{20}\)y\(^{12}\)=0 =>x=0 ;y va z bat ki
x\(^{10}\)z\(^{20}\)=0 =>y=z=0 ;x bat ki
\(A+B=\left(-3x^5y^3\right)^4+\left(2x^2z^4\right)^5=81x^{20}y^{12}+32x^{10}z^{20}\)
Ta thấy \(81x^{20}y^{12}\ge0;32x^{10}z^{20}\ge0\) => \(81x^{20}y^{12}+32x^{10}z^{20}\ge0\)
Mà A + B = 0 \(\Rightarrow\hept{\begin{cases}x^{20}y^{12}=0\\x^{10}z^{20}=0\end{cases}}\)=> x = 0 ; y và z bất kỳ hoặc y = z = 0 ; x bất kỳ
Ta có :
A=\(\left(-3x^5y^3\right)^4\ge0\forall x,y\)
B=\(\left(2x^2z^4\right)^5=\left(2xz^2\right)^{10}\ge0\forall x,z\)
Mà A+B = 0
\(\Rightarrow\left\{{}\begin{matrix}A=0\\B=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3x^5y^3\\2xz^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\\\left\{{}\begin{matrix}x=0\\z=0\end{matrix}\right.\end{matrix}\right.\)
Vậy x =0 ; y = 0 ; z = 0 là các giá trị cần tìm
Áp dụng t/c dãy tỉ số bằng nhau:
a.
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{2x}{6}=\dfrac{4y}{20}=\dfrac{2x+4y}{6+20}=\dfrac{28}{26}=\dfrac{14}{13}\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.\dfrac{14}{13}=\dfrac{52}{13}\\y=5.\dfrac{14}{13}=\dfrac{70}{13}\end{matrix}\right.\)
(Em có nhầm đề 26 thành 28 ko nhỉ, số xấu quá)
b.
\(4x=5y\Rightarrow\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{3x}{15}=\dfrac{-2y}{-8}=\dfrac{3x-2y}{15-8}=\dfrac{35}{7}=5\)
\(\Rightarrow\left\{{}\begin{matrix}x=5.5=25\\y=4.2=20\end{matrix}\right.\)
c.
\(\dfrac{x}{-3}=\dfrac{y}{-7}=\dfrac{2x}{-6}=\dfrac{4y}{-28}=\dfrac{2x+4y}{-6-28}=\dfrac{68}{-34}=-2\)
\(\Rightarrow\left\{{}\begin{matrix}x=-3.\left(-2\right)=6\\y=-7.\left(-2\right)=14\end{matrix}\right.\)
d.
\(\dfrac{x}{2}=\dfrac{y}{-3}=\dfrac{z}{4}=\dfrac{4x}{8}=\dfrac{-3y}{9}=\dfrac{-2z}{-8}=\dfrac{4x-3y-2z}{8+9-8}=\dfrac{16}{9}\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.\dfrac{16}{9}=\dfrac{32}{9}\\y=-3.\dfrac{16}{9}=-\dfrac{48}{9}\\z=4.\dfrac{16}{9}=\dfrac{64}{9}\end{matrix}\right.\)
\(a,4x=5y\:\Rightarrow\frac{x}{5}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{12}\)
\(4y=6z\Rightarrow\frac{y}{6}=\frac{z}{4}\Rightarrow\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{x}{15}=\frac{2y}{24}=\frac{3z}{24}\)
\(\Rightarrow\frac{x-2y+3z}{15-24+24}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{5}{15}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{1}{3}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1}{3}\cdot15=5\\y=\frac{1}{3}\cdot12=4\\z=\frac{1}{3}\cdot8=\frac{8}{3}\end{cases}}\)