2x+2+2x+1-2x=40
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2x+2+2x+1-2x = 40
2x.22+2x.2-2x = 40
2x(4+2-1) = 40
2x.5 = 40
2x = 8
x = 3
\(2^x.2^2+2^x.2-2^x=40\)
\(2^x\left(2^2+2-1\right)=40\)
\(2^x.5=40\)
\(2^x=8\)
\(x=3\)
\(\frac{1}{2x^2+10x+12}+\frac{1}{2x^2+14x+24}+\frac{1}{2x^2+18x+40}+\frac{1}{2x^2+22x+60}=\frac{1}{8}\)
<=> \(\frac{1}{2x^2+6x+4x+12}+\frac{1}{2x^2+6x+8x+24}+\frac{1}{2x^2+8x+10x+40}+\frac{1}{2x^2+12x+10x+60}=\frac{1}{8}\)
<=> \(\frac{1}{2x\left(x+3\right)+4\left(x+3\right)}+\frac{1}{2x\left(x+3\right)+8\left(x+3\right)}+\frac{1}{2x\left(x+4\right)+10\left(x+4\right)}+\frac{1}{2x\left(x+6\right)+10\left(x+6\right)}=\frac{1}{8}\)
<=> \(\frac{1}{\left(x+3\right)\left(2x+4\right)}+\frac{1}{\left(x+3\right)\left(2x+8\right)}+\frac{1}{\left(x+4\right)\left(2x+10\right)}+\frac{1}{\left(x+6\right)\left(2x+10\right)}=\frac{1}{8}\)
<=> \(\frac{1}{2\left(x+2\right)\left(x+3\right)}+\frac{1}{2\left(x+3\right)\left(x+4\right)}+\frac{1}{2\left(x+4\right)\left(x+5\right)}+\frac{1}{2\left(x+5\right)\left(x+6\right)}=\frac{1}{8}\)
<=> \(\frac{1}{2}.\left[\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}\right]=\frac{1}{8}\)
<=> \(\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}=\frac{1}{8}:\frac{1}{2}\)
<=> \(\frac{1}{x+2}-\frac{1}{x+6}=\frac{1}{4}\)
<=> \(\frac{4\left(x+6\right)-4\left(x+2\right)}{4\left(x+2\right)\left(x+6\right)}=\frac{\left(x+2\right)\left(x+6\right)}{4\left(x+2\right)\left(x+6\right)}\)
<=> \(4\left(x+6\right)-4\left(x+2\right)=\left(x+2\right)\left(x+6\right)\)
<=> \(4\left(x+6-x-2\right)=x^2+8x+12\)
<=> \(4.4=x^2+8x+12\)
<=> \(x^2+8x-4=0\)
<=> ...
Đến đây bạn tự giải tiếp. Mình bấm máy 570ES PLUS II thì ra nghiệm \(x\approx0,47\).
a. Thay x = 2 vào phương trình (2x + 1)(9x + 2k) – 5(x + 2) = 40, ta có:
(2.2+1)(9.2+2k)−5(2+2)=40⇔(4+1)(18+2k)−5.4=40⇔5(18+2k)−20=40⇔90+10k−20=40⇔10k=40−90+20⇔10k=−30⇔k=−3(2.2+1)(9.2+2k)−5(2+2)=40⇔(4+1)(18+2k)−5.4=40⇔5(18+2k)−20=40⇔90+10k−20=40⇔10k=40−90+20⇔10k=−30⇔k=−3
Vậy khi k = -3 thì phương trình (2x + 1)(9x + 2k) – 5(x + 2) = 40 có nghiệm x = 2
b. Thay x = 1 vào phương trình 2(2x+1)+18=3(x+2)(2x+k)2(2x+1)+18=3(x+2)(2x+k), ta có:
2(2.1+1)+18=3(1+2)(2.1+k)⇔2(2+1)+18=3.3(2+k)⇔2.3+18=9(2+k)⇔6+18=18+9k⇔24−18=9k⇔6=9k⇔k=69=232(2.1+1)+18=3(1+2)(2.1+k)⇔2(2+1)+18=3.3(2+k)⇔2.3+18=9(2+k)⇔6+18=18+9k⇔24−18=9k⇔6=9k⇔k=\(\frac{6}{9}\)=\(\frac{2}{3}\)
Vậy khi thì phương trình có nghiệm x = 1
\(a,\Leftrightarrow-4+k=-3\Leftrightarrow k=1\\ b,\Leftrightarrow-3\left(2k-18\right)=40\\ \Leftrightarrow2k-18=-\dfrac{40}{3}\Leftrightarrow k=\dfrac{7}{3}\\ c,\Leftrightarrow10+18=9\left(2+k\right)\\ \Leftrightarrow k+2=\dfrac{28}{9}\Leftrightarrow k=\dfrac{10}{9}\)
a.\(-x^4+2x^3-2x^2+2x-1=-\left(x^4+2x^2+1\right)+\left(2x^3+2x\right)\)
=\(-\left(x^2+1\right)^2+2x\left(x^2+1\right)=\left(x^2+1\right)\left(-1+2x\right)\)
b.\(-2x^2-y^2+2xy+4x-10=-\left(x^2-4x+4\right)-\left(x^2-2xy+y^2\right)-6\)
=\(-\left(x-2\right)^2-\left(x-y\right)^2-6\)
a.=\(-\left(x^4+2x^2+\text{1}\right)+\left(2x^3+2x\right)\)=\(-\left(x^2+1\right)^2+2x\left(x^2+1\right)=\left(x^2+1\right)\left(-x^2+2x-1\right)\)
=\(-\left(x^2+1\right)\left(x-1\right)^2\)
.
b.=\(-\left(x^2-4x+4\right)-\left(x^2-2xy+y^2\right)-36\)=\(-\left(x-2\right)^2-\left(x-y\right)^2-36\)
1) \(2x\cdot\left(x-3\right)-5=3x\left(2x-5\right)-4x^2+40\)
\(\Leftrightarrow2x^2-6x-5=6x^2-15x-4x^2+40\)
\(\Leftrightarrow2x^2-6x-5=2x^2-15x+40\)
\(\Leftrightarrow2x^2-6x-5-2x^2+15x-40=0\)
\(\Leftrightarrow9x-45=0\)
<=> x=5
2) x(2x-1)-5(-7)2=2x2-2x+5
<=> 2x2-x-5.49=2x2-2x+5
<=> 2x2-x-245-2x2+2x-5=0
<=> x-250=0
<=> x=250
3) |a-2|=10
\(\Leftrightarrow\orbr{\begin{cases}x-2=10\\x-2=-10\end{cases}\Leftrightarrow\orbr{\begin{cases}x=12\\x=-8\end{cases}}}\)
4) |x|=-5
=> Không tồn tại giá trị của x thỏa mãn vì |x| >=0 với mọi x thuộc Z
Lời giải:
$2^{x+2}+2^{x+1}-2^x=40$
$2^x.2^2+2^x.2-2^x=40$
$2^x(2^2+2-1)=40$
$2^x.5=40$
$2^x=40:5=8=2^3$
$\Rightarrow x=3$