K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2021

\(\sqrt{x^2+31x}+\sqrt{x+31}=x+\sqrt{x}+8\left(x\ge0\right)\)

\(\Leftrightarrow x^2+32x+31+2\sqrt{\left(x^2+31x\right)\left(x+31\right)}=x^2+x+64+2x\sqrt{2}+16\sqrt{x}+16x\)

\(\Leftrightarrow x^2+32x+31+2\left(x+31\right)\sqrt{x}=x^2+17x+64+2x\sqrt{2}+16\sqrt{x}\)( vì \(x\ge0\))

\(\Leftrightarrow15x+46\sqrt{x}-33=0\)(1)

Đặt \(\sqrt{x}=t\ge0\)

\(\Rightarrow pt\left(1\right)\)có dạng: \(15t^2+46t-33=0\)

\(\Delta=46^2-4.15.\left(-33\right)=4096>0\)

\(\Rightarrow\)pt có 2 no phân biệt \(\orbr{\begin{cases}t=\frac{-46+\sqrt{4096}}{30}=\frac{3}{5}\left(tm\right)\Rightarrow x=\frac{9}{25}\left(tm\right)\\t=\frac{-46-\sqrt{4096}}{30}=\frac{-11}{3}\left(loai\right)\end{cases}}\)

Vậy pt có nghiệm \(x=\frac{9}{25}\)

Cách kia tiệt trừ ra mất tg == hay như này nhá

\(\left(\sqrt{x+20}-\sqrt{x+11}\right)\left(1+\sqrt{x^2+31x+220}\right)=9\)

\(\Leftrightarrow\sqrt{x+20}-\sqrt{x+11};1+\sqrt{x^2+31x+220}\inƯ\left(9\right)\)

\(\sqrt{x+20}-\sqrt{x+11}\)1-13-39-9
\(1+\sqrt{x^2+31x+220}\)9-93-31-1
x5vô nghiệm -11vô nghiệmvô nghiệmvô nghiệm 
xvô nghiệm vô nghiệm vô nghiệmvô nghiệmvô nghiệmvô nghiệm

Được ra số vô tỉ nều cần mk gửi cho, ~~ hại não thật sự ~~ 

29 tháng 10 2017

)2+3(x+1)2{7x2−22x+28=(2x−1)2+3(x−3)27x2+8x+13=(2x−1)2+3(x+2)231x2+14x+4=7(2x−1)2+3(x+1)2


Do đó: 

VT≥3–√|3−x|+3–√|x+2|+3–√|x+1|≥3–√(3−x)+3–√(x+2)+3–√(x+1)=33–√(x+2)VT≥3|3−x|+3|x+2|+3|x+1|≥3(3−x)+3(x+2)+3(x+1)=33(x+2)

20 tháng 8 2020

to gefhfhdgtggg

GGGGGG

GGGGG

G

G

G

G

G

G

G

G

G

G

GG

GG

G

G

G

G

G

GG

G

GGG

G

G

G

G

G

G

G

G

G

G

GG

G

G

G

G

G

G

G

GG

G

GG

G

G

G

G

G

G

G

G

G

G

G

G

G

GG

GG

G

G

G

GG

GGGGG

G

G

G

G

G

G

G

GGGGG

G

G

GG

GG

GG

G

G

G

GGG

G

G

GG

G

GGG

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

GG

GG

G

G

GG

F

E

RE

R

ER

\\\\\\]

YYYYYYYYY

CMMCMMCMMCMMCMMMCMCMMCMCMCMC

N

G

U

V

L

AHIHI

a: \(\left\{{}\begin{matrix}\dfrac{12}{x-3}-\dfrac{5}{y+2}=63\\\dfrac{8}{x-3}+\dfrac{15}{y+2}=-13\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{24}{x-3}-\dfrac{10}{y+2}=126\\\dfrac{24}{x-3}+\dfrac{45}{y+2}=-39\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-55}{y+2}=165\\\dfrac{12}{x-3}-\dfrac{5}{y+2}=63\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y+2=\dfrac{-1}{3}\\\dfrac{12}{x-3}=48\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{7}{3}\\x=\dfrac{13}{4}\end{matrix}\right.\)

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

Bình phương hai vế của phương trình đã cho, ta được:

\(\begin{array}{l}\sqrt {31{x^2} - 58x + 1}  = \sqrt {10{x^2} - 11x - 19} \\ \Rightarrow 31{x^2} - 58x + 1 = 10{x^2} - 11x - 19\\ \Rightarrow 21{x^2} - 47x + 20 = 0\end{array}\)

\( \Rightarrow x = \frac{5}{3}\) hoặc \(x = \frac{4}{7}\)

Thay lần lượt các nghiệm trên vào phương trình đã cho, ta thấy không có nghiệm nào thỏa mãn

Vậy phương trình đã cho vô nghiệm

Chú ý khi giải: sau khi bình phương hai vế thì các bước giải tiếp theo chỉ được sử dụng dấu suy ra không được sử dụng dấu tương đương (vì tập nghiệm của chúng có thể không giống nhau)

QT
Quoc Tran Anh Le
Giáo viên
7 tháng 3 2021

Do có quá ít câu hỏi nên bạn nào trả lời được, mình sẽ xóa khỏi mục "Câu hỏi hay" nhé!

7 tháng 3 2021

Quoc Tran Anh Le CTV Chưa ra bài tiếp à!?

28 tháng 10 2023

c: \(x^2-6\sqrt{x^2+5}+x=2\sqrt{x-1}-14\)

=>\(x^2-4-6\left(\sqrt{x^2+5}-3\right)+x-2-2\sqrt{x-1}+2=0\)

=>\(\left(x-2\right)\left(x+2\right)-6\cdot\dfrac{x^2+5-9}{\sqrt{x^2+5}+3}+\left(x-2\right)-2\cdot\dfrac{x-1-1}{\sqrt{x-1}+1}=0\)

=>\(\left(x-2\right)\left(x+2\right)-\dfrac{6}{\sqrt{x^2+5}+3}\cdot\left(x-2\right)\left(x+2\right)+\left(x-2\right)-2\cdot\dfrac{x-2}{\sqrt{x-1}+1}=0\)

=>\(\left(x-2\right)\left[\left(x+2\right)-\dfrac{6}{\sqrt{x^2+5}+3}\cdot\left(x+2\right)+1-\dfrac{2}{\sqrt{x-1}+1}\right]=0\)

=>x-2=0

=>x=2

d: \(x^2-\sqrt{\left(x^2-8\right)\left(x-2\right)}+x=\sqrt{x^2-8}+\sqrt{x-2}+9\)

=>\(x^2-9-\sqrt{\left(x^2-8\right)\left(x-2\right)}+x-\sqrt{x^2-8}-\sqrt{x-2}=0\)

=>\(\Leftrightarrow\left(x-3\right)\left(x+3\right)-\sqrt{x^3-2x^2-8x+16}+x-3+1-\sqrt{x^2-8}+2-\sqrt{x-2}=0\)

=>\(\left(x-3\right)\left(x+3\right)+\left(x-3\right)-\sqrt{x^3-2x^2-8x+16}+1+\dfrac{1-x^2+8}{1+\sqrt{x^2-8}}+1-\sqrt{x-2}=0\)

=>\(\left(x-3\right)\left(x+4\right)-\dfrac{x^3-2x^2-8x+16-1}{\sqrt{x^3-2x^2-8x+16}+1}-\dfrac{\left(x-3\right)\left(x+3\right)}{\sqrt{x^2-8}+1}+\dfrac{1-x+2}{1+\sqrt{x-2}}=0\)

=>\(\left(x-3\right)\left(x+4\right)-\dfrac{x^3-2x^2-8x+15}{\sqrt{x^3-2x^2-8x+16}+1}-\dfrac{\left(x-3\right)\left(x+3\right)}{\sqrt{x^2-8}+1}-\dfrac{x-3}{1+\sqrt{x-2}}=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+4\right)-\dfrac{\left(x-3\right)\left(x^2+x-5\right)}{\sqrt{x^3-2x^2-8x+16}+1}-\dfrac{\left(x-3\right)\left(x+3\right)}{\sqrt{x^2-8}+1}-\dfrac{x-3}{1+\sqrt{x-2}}=0\)

\(\Leftrightarrow\left(x-3\right)\left[\left(x+4\right)-\dfrac{x^2+x-5}{\sqrt{x^3-2x^2-8x+16}+1}-\dfrac{x+3}{\sqrt{x^2-8}+1}-\dfrac{1}{\sqrt{x-2}+1}\right]=0\)

=>x-3=0

=>x=3

2:

a: =>2x^2-4x-2=x^2-x-2

=>x^2-3x=0

=>x=0(loại) hoặc x=3

b: =>(x+1)(x+4)<0

=>-4<x<-1

d: =>x^2-2x-7=-x^2+6x-4

=>2x^2-8x-3=0

=>\(x=\dfrac{4\pm\sqrt{22}}{2}\)

 

20 tháng 11 2023

\(\sqrt{24+8\sqrt{9-x^2}}=x+2\sqrt{3-x}+4\) \(\left(Đk:-3\le x\le3\right)\)

\(\sqrt{4\left(x+3\right)+8\sqrt{9-x^2}+4\left(3-x\right)}=x+2\sqrt{3-x}+4\)

\(\sqrt{\left(2\sqrt{x+3}+2\sqrt{3-x}\right)^2}=x+2\sqrt{3-x}+4\)

\(2\sqrt{x+3}+2\sqrt{3-x}=x+2\sqrt{3-x}+4\)

\(2\sqrt{x+3}=x+4\)

\(4\left(x+3\right)=x^2+8x+14\)

\(x^2+4x+2=0\)

\(\Delta=16-8=8\)

\(\Delta>0\)=> phương trình có 2 nghiệm phân biệt

\(\left[{}\begin{matrix}x=\dfrac{-4+2\sqrt{2}}{2}=-2+\sqrt{2}\\x=\dfrac{-4-2\sqrt{2}}{2}=-2-\sqrt{2}\end{matrix}\right.\)

25 tháng 7 2015

ĐK: \(x\ge8\)

Đặt \(a=\sqrt[3]{x-1}\text{ (}a\ge\sqrt[3]{7}\text{)};\text{ }b=\sqrt{x-8}\text{ (}b\ge0\text{)}\Rightarrow x=b^2+8\)

\(a^3-b^2=x-1-\left(x-8\right)=7\text{ (*)}\)

\(pt\text{ thành }a^2-2a-\left(b^2+8-5\right)b-3\left(b^2+8\right)+31=0\)

\(\Leftrightarrow\left(a^2-2a\right)-\left(b^3+3b^2+3b\right)+7=0\)

\(\Leftrightarrow\left(a-1\right)^2-\left(b+1\right)^3+a^3-b^2=0\)

Đặt \(b+1=c\text{ (}c\ge1\text{)}\)

\(pt\text{ thành }a^3-c^3+\left(a-1\right)^2-\left(c-1\right)^2=0\)

\(\Leftrightarrow\left(a-c\right)\left(a^2+ac+c^2\right)+\left(a-c\right)\left(a+c-2\right)=0\)

\(\Leftrightarrow\left(a-c\right)\left[a^2+c^2+a+c+ac-2\right]=0\)

\(\Leftrightarrow a-c=0\text{ (do }a^2+c^2+a+c+ac-2>0\text{ với mọi }a\ge\sqrt[3]{7};c\ge1\text{)}\)

\(\Leftrightarrow a=c\Leftrightarrow a=b+1\)

Thay \(b=a-1\) vào \(\left(\text{*}\right)\)ta được

\(a^3-\left(a-1\right)^2=7\Leftrightarrow\left(a-2\right)\left(a^2+a+4\right)=0\)

\(\Leftrightarrow a-2=0\text{ hoặc }a^2+a+4=0\text{ (vô nghiệm)}\)

\(\Leftrightarrow a=2\)

\(\Rightarrow\sqrt[3]{x-1}=2\Leftrightarrow x=9\)

Kết luận: \(x=9\).