Giúp em câu Toán cao cấp với ạ
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
NV
Nguyễn Việt Lâm
Giáo viên
22 tháng 10 2021
\(\left(cotx\right)^{ln\left(1+x^2\right)}=\left(tanx\right)^{-ln\left(1+x^2\right)}=e^{ln\left[\left(tanx\right)^{-ln\left(1+x^2\right)}\right]}\)
\(=e^{-ln\left(tanx\right).ln\left(1+x^2\right)}\sim e^{-ln\left(x\right).x^2}=e^{-\dfrac{lnx}{x^{-2}}}\)
L'Hopital (bạn tự hiểu là giới hạn khi x->0): \(e^{-\dfrac{1}{-2x.x^{-3}}}=e^{\dfrac{x^2}{2}}=e^0=1\)
JP
1
23 tháng 3 2022
Câu 1:
Ta có 2x - y = 8 => 2x - y + 9 = 17
Mà 3x + y = 17 => 2x - y + 9 = 3x + y
<=> 9 - y = x + y <=> 9 = x + 2y <=> x = 9 - 2y
Mà 2x - y = 8 => 18 - 4y - y = 8 => 18 - 5y = 8 => y = 2 => x = 5
TN
1
NV
Nguyễn Việt Lâm
Giáo viên
28 tháng 12 2021
23.
\(\dfrac{a-\sqrt{a}}{1-\sqrt{a}}=\dfrac{-\sqrt{a}\left(1-\sqrt{a}\right)}{1-\sqrt{a}}=-\sqrt{a}\)
Đáp án C
TN
1
TN
3
JP
1
TN
1
\(z'_x=x^2-3\)
\(z'_y=1\)
\(z''_{xx}=2x\) ; \(z''_{xy}=0\) ; \(z''_{yy}=0\)
\(\Rightarrow d^2z=z''_{xx}dx^2+2z''_{xy}dxdy+z''_{yy}dy^2=2xdx^2\)
20.
\(-x^2+y=1\Rightarrow y=x^2+1\)
Thế vào hàm z ta được: \(z=\dfrac{x^3}{3}-3x+x^2+1\)
\(z'=x^2+2x-3=0\Rightarrow\left[{}\begin{matrix}x=1\Rightarrow y=2\\x=-3\Rightarrow y=10\end{matrix}\right.\)
\(z''=2x+2\Rightarrow\left\{{}\begin{matrix}z''\left(1\right)=4>0\\z''\left(-3\right)=-4< 0\end{matrix}\right.\)
\(\Rightarrow M\left(-3;10\right)\) là điểm cực đại và \(N\left(1;2\right)\) là điểm cực tiểu