\(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{90}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(y - \(\dfrac{1}{2}\)) : \(\left(\dfrac{1}{2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}\right)\)= \(\dfrac{1}{3}\)
(y\(-\dfrac{1}{2}\)): \(\left(\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}\right)\)= \(\dfrac{1}{3}\)
\(\left(y-\dfrac{1}{2}\right):\left(\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{10}\right)=\dfrac{1}{3}\)
\(\left(y-\dfrac{1}{2}\right):\dfrac{3}{10}=\dfrac{1}{3}\)
\(\left(y-\dfrac{1}{2}\right)=\dfrac{1}{10}\)
y = \(\dfrac{3}{5}\)
8,A=\(\dfrac{9}{10}-\left(\dfrac{1}{10\times9}+\dfrac{1}{9\times8}+\dfrac{1}{8\times7}+...+\dfrac{1}{2\times1}\right)\)
=\(\dfrac{9}{10}-\left(\dfrac{1}{10}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{8}+...+\dfrac{1}{2}-1\right)\)
=\(\dfrac{9}{10}-\left(\dfrac{1}{10}-1\right)\)
=\(\dfrac{9}{10}-\dfrac{\left(-9\right)}{10}\)
=\(\dfrac{9}{5}\)
c)
Ta có :\(2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{1+\dfrac{1}{2}}}}\)
\(=2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{\dfrac{3}{2}}}}\) \(=2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{2}{3}}}\) \(=2+\dfrac{1}{1+\dfrac{1}{\dfrac{8}{3}}}\) \(=2+\dfrac{1}{1+\dfrac{3}{8}}\) \(=2+\dfrac{1}{\dfrac{11}{8}}\) \(=2+\dfrac{8}{11}\) \(=\dfrac{30}{11}\)
d) \(\left(\dfrac{1}{3}\right)^{-1}-\left(-\dfrac{6}{7}\right)^0+\left(\dfrac{1}{2}\right)^2:2\)
\(=3-1+\left(\dfrac{1}{2}\right)^2:2\)
\(=3-1+\dfrac{1}{4}:2\)
\(=3-1+\dfrac{1}{8}\)
\(=\dfrac{17}{8}\)
a, \(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{9900}\)
\(\Rightarrow\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
\(\Rightarrow\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{100}\)
\(\Rightarrow\dfrac{1}{1}-\dfrac{1}{100}\)
\(\Rightarrow\dfrac{99}{100}\)
`[-1]/2+[-1]/6+[-1]/12+[-1]/20+[-1]/30+[-1]/42+[-1]/56+[-1]/72+[-1]/90`
`=(-1)(1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90)`
`=(-1)(1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10)`
`=(-1)(1-1/10)`
`=(-1). 9/10=-9/10`
A = \(\dfrac{-1}{2}\) + \(\dfrac{-1}{6}\)+ \(\dfrac{-1}{12}\)+ \(\dfrac{-1}{20}\)+ \(\dfrac{-1}{30}\)+ \(\dfrac{-1}{42}\)+ \(\dfrac{-1}{56}\)+ \(\dfrac{-1}{72}\)+ \(\dfrac{-1}{90}\)
A = \(\dfrac{-1}{2}\) + \(\dfrac{-1}{2\times3}\)+ \(\dfrac{-1}{3\times4}\)+ \(\dfrac{-1}{4\times5}\)+ \(\dfrac{-1}{5\times6}\)+ \(\dfrac{-1}{6\times7}\)+ \(\dfrac{-1}{7\times8}\)+ \(\dfrac{-1}{8\times9}\)+ + \(\dfrac{-1}{9\times10}\)
A = - (\(\dfrac{1}{2}\)+ \(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)+ \(\dfrac{1}{3}\)-\(\dfrac{1}{4}\)+ \(\dfrac{1}{4}\)- \(\dfrac{1}{5}\)+ \(\dfrac{1}{5}\)-\(\dfrac{1}{6}\)+ \(\dfrac{1}{6}\)-\(\dfrac{1}{7}\)+\(\dfrac{1}{7}\)-\(\dfrac{1}{8}\)+\(\dfrac{1}{8}\)-\(\dfrac{1}{9}\)+ \(\dfrac{1}{9}\)-\(\dfrac{1}{10}\))
A = -(1-\(\dfrac{1}{10}\))
A = \(\dfrac{-9}{10}\)
\(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{90}}\)
\(Đặt:A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{90}}\)
Ta có:
\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{90}}\)
\(\dfrac{A}{2}=\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{91}}\)
\(\dfrac{A}{2}-A=\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{91}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{90}}\right)\)
\(-\dfrac{1}{2}A=\dfrac{1}{2^{91}}-\dfrac{1}{2}\)
\(A=\dfrac{\left(\dfrac{1}{2^{91}}-\dfrac{1}{2}\right)}{-\dfrac{1}{2}}\)
\(A=-2\left(\dfrac{1}{2^{91}}-\dfrac{2^{90}}{2^{91}}\right)\)
\(A=\dfrac{-2\left(1-2^{90}\right)}{2^{91}}\)
\(A=\dfrac{-2-\left[-\left(2^{91}\right)\right]}{2^{91}}\)
\(A=\dfrac{-2+2^{91}}{2^{91}}\)
\(A=-\dfrac{2}{2^{91}}+\dfrac{2^{91}}{2^{91}}\)
\(A=\dfrac{1}{2^{90}}-1\)