K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2022

vecto AI=1/2*vecto AM

=1/4(vecto AB+vecto AC)

=1/4(vecto AC+vecto CB+vecto AC)

=1/4(-2vecto CA+vecto CB)

=-1/2*vecto CA+1/4*vecto CB

=>m=-1/2; n=1/4

a)

Xét ΔANC có 

D là trung điểm của AC(gt)

DK//AN(gt)

Do đó: K là trung điểm của NC(Định lí 1 về đường trung bình của tam giác)

b) 

Xét ΔBDK có 

M là trung điểm của BD(gt)

MN//KD(gt)

Do đó: N là trung điểm của BK(Định lí 1 về đường trung bình của tam giác)

Ta có: BN:NC

\(=\dfrac{BN}{2NK}=\dfrac{BN}{2BN}=\dfrac{1}{2}\)

23 tháng 12 2023

a: Xét ΔABC có

MN//BC

nên \(\dfrac{AM}{MB}=\dfrac{AN}{NC}\)

=>\(\dfrac{AN}{NC}=1\)

=>AN=NC

b: Xét tứ giác AICK có

N là trung điểm chung của AC và KI

=>AICK là hình bình hành

c: Xét ΔABC có AI là phân giác

nên \(\dfrac{IB}{IC}=\dfrac{AB}{AC}\)

\(\dfrac{MB}{NC}=\dfrac{AB}{2}:\dfrac{AC}{2}=\dfrac{AB}{AC}\)

=>\(\dfrac{IB}{IC}=\dfrac{MB}{NC}\)

=>\(IB\cdot NC=MB\cdot IC\)

29 tháng 12 2023

Xét ΔBAD có BM là đường trung tuyến

nên \(\overrightarrow{BM}=\dfrac{1}{2}\left(\overrightarrow{BA}+\overrightarrow{BD}\right)\)

\(=\dfrac{1}{2}\left(\overrightarrow{BA}+\dfrac{2}{3}\overrightarrow{BC}\right)\)

\(=\dfrac{1}{2}\left(\overrightarrow{BA}+\dfrac{2}{3}\overrightarrow{BA}+\dfrac{2}{3}\overrightarrow{AC}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{5}{3}\overrightarrow{BA}+\dfrac{2}{3}\overrightarrow{AC}\right)\)

\(=\dfrac{1}{6}\left(5\overrightarrow{BA}+2\overrightarrow{AC}\right)\)

\(=\dfrac{5}{6}\left(\overrightarrow{BA}+\dfrac{2}{5}\overrightarrow{AC}\right)\)

\(\overrightarrow{BN}=\overrightarrow{BA}+\overrightarrow{AN}\)

\(=\overrightarrow{BA}+\dfrac{2}{5}\overrightarrow{BC}\)

=>\(\overrightarrow{BM}=\dfrac{5}{6}\cdot\overrightarrow{BN}\)

=>B,M,N thẳng hàng

17 tháng 2 2020

A B C I M N

Bạn dưới làm câu a) rồi mình xin phép làm từ câu b) nhé :

b) Áp dụng định lý Talets ta có :

+) \(MK//BI\Rightarrow\frac{KM}{BI}=\frac{AK}{AI}\)

+) \(KN//IC\Rightarrow\frac{AK}{AI}=\frac{KN}{IC}\)

\(\Rightarrow\frac{KM}{BI}=\frac{KN}{IC}\) mà \(BI=CI\)

\(\Rightarrow KM=KN\)

Nên K là trung điểm của MN.

c) Ta thấy : \(MN//BC\)

Vì thế, để \(MN\perp AI\)

\(\Leftrightarrow AI\perp BC\)

\(\Leftrightarrow\Delta ABC\) cân tại A ( Do \(AI\) vừa là trung tuyến, vừa là đường cao )

\(\Leftrightarrow AB=AC\)

Vậy \(\Delta ABC\) có thêm điều kiện \(AB=AC\) thì \(MN\perp AI\)

17 tháng 2 2020

a) Kẻ đoạn thẳng MN

Ta có: IM là tia phân giác \(\widehat{AIB}\)

\(\Rightarrow\frac{AM}{BM}=\frac{AI}{BI}\left(1\right)\)

IN là tia phân giác \(\widehat{AIC}\)

\(\Rightarrow\frac{AN}{NC}=\frac{AI}{IC}\left(2\right)\)

Từ (1) (2) và BI = CI

\(\Rightarrow\frac{AM}{MB}=\frac{AN}{NC}\)

=> MN // BC (định lý Ta lét đảo)

15 tháng 11 2019

1 ) 

Xét \(\Delta AMB\)và \(\Delta CMN\)có :

BM = NM ( gt )

\(\widehat{AMB}=\widehat{CMN}\) ( đối đỉnh )

CM = AM ( gt)

=> \(\Delta AMB=\Delta CMN\left(c.g.c\right)\)

=> CN = AB

và \(\widehat{MCN}=90^o\) ( hay \(\widehat{ACN}=90^o\) )

=> \(CN\perp AC\)

2 ) Dễ cm \(\Delta AMN=\Delta CMB\left(c.g.c\right)\)

=> AN = BC 

và \(\widehat{BCM}=\widehat{MAN}\) mà 2 góc này ở vị trí so le trong => BC//AN

3)

Dễ cm \(\Delta BAN=\Delta NCB\left(c.c.c\right)\)

4 ) 

Dễ cm \(\Delta BAC=\Delta NCA\left(c.c.c\right)\)