K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2017

Ta có:

\(1.3.5...\left(2n-1\right)=\frac{1.3.5...\left(2n-1\right).2.4.6....2n}{2.4.6...2n}\)

\(=\frac{1.2.3....2n}{1.2.2.2.3.2...n.2}=\frac{1.2.3...2n}{2^n\left(1.2.3...n\right)}=\frac{\left(n+1\right)\left(n+2\right)...2n}{2^n}\)

Từ đây ta có:

\(\frac{1.3.5...\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)...2n}=\frac{\left(n+1\right)\left(n+2\right)...2n}{2^n\left(n+1\right)\left(n+2\right)...2n}=\frac{1}{2^n}\)

27 tháng 2 2017

hay nhỉ

1:

2n^2+5n-1 chia hết cho 2n-1

=>2n^2-n+6n-3+2 chia hết cho 2n-1

=>2n-1 thuộc {1;-1;2;-2}

mà n nguyên

nên n=1 hoặc n=0

2:

a: A=n(n+1)(n+2)

Vì n;n+1;n+2 là 3 số liên tiếp

nên A=n(n+1)(n+2) chia hết cho 3!=6

b: B=(2n-1)[(2n-1)^2-1]

=(2n-1)(2n-2)*2n

=4n(n-1)(2n-1)

Vì n;n-1 là hai số nguyên liên tiếp

nên n(n-1) chia hết cho 2

=>B chia hết cho 8

c: C=n^2+14n+49-n^2+10n-25=24n+24=24(n+1) chia hết cho 24

3 tháng 7 2023

nhanh dữ, cảm ơn nhé

7 tháng 9 2020

1. a là số tự nhiên chia 5 dư 1

=> a = 5k + 1 ( k thuộc N )

b là số tự nhiên chia 5 dư 4

=> b = 5k + 4 ( k thuộc N )

Ta có ( b - a )( b + a ) = b2 - a2

                                   = ( 5k + 4 )2 - ( 5k + 1 )2

                                   = 25k2 + 40k + 16 - ( 25k2 + 10k + 1 )

                                   = 25k2 + 40k + 16 - 25k2 - 10k - 1

                                   = 30k + 15

                                   = 15( 2k + 1 ) chia hết cho 5 ( đpcm )

2. 2n2( n + 1 ) - 2n( n2 + n - 3 )

= 2n3 + 2n2 - 2n3 - 2n2 + 6n

= 6n chia hết cho 6 ∀ n ∈ Z ( đpcm )

3. n( 3 - 2n ) - ( n - 1 )( 1 + 4n ) - 1

= 3n - 2n2 - ( 4n2 - 3n - 1 ) - 1

= 3n - 2n2 - 4n2 + 3n + 1 - 1

= -6n2 + 6n

= -6n( n - 1 ) chia hết cho 6 ∀ n ∈ Z ( đpcm )

21 tháng 10 2022

Bài 3: 

a: =>4n-2-3 chia hết cho 2n-1

=>\(2n-1\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{1;0;2;-1\right\}\)

b: =>-3 chia hết cho 2n-1

=>\(2n-1\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{1;0;2;-1\right\}\)

21 tháng 11 2014

3a)

1+2+3+4+5+...+n=231

=> (1+n).n:2=231

(1+n).n=231.2

(1+n).n=462

(1+n).n=2.3.7.11

(1+n).n=(2.11).(3.7)

(1+n).n=22.21

=>n=21

2 tháng 11 2016

gọi d là ước chung của n+3 và 2n+1 . Ta có (2n+6)chia hết cho d và 2n+5 chia hết cho d suy ra (2n+6)-(2n+5)chia hết cho d suy ra 1chia hết cho d vậy d=1   nhớ kết bạn với mình nhé

15 tháng 1 2017
  • Ta có: 1.3.5...(2n - 1) 
  • = { [1.3.5....(2n - 1)].(2.4.6...2n) }/(2.4.6...2n) 
  • = (1.2.3.4....2n)/[ (1.2).(2.2).(3.2)...(n.2) ] 
  • = {(1.2.3.4...n).[ (n + 1)(n + 2)...2n ] }/[ (1.2.3..n)(2.2.2...2) ] 
  • = [ (n + 1)(n + 2)...2n ]/(2.2.2...2) 
  • => 1.3.5...(2n - 1) = [ (n + 1)(n + 2)...2n ]/(2.2.2...2) 
  • Do n ∈ Z+ => 1.3.5...(2n - 1) thuộc nguyên dương 
  • => [ (n + 1)(n + 2)...2n ]/(2.2.2...2) thuộc nguyên dương 
  • => [ (n + 1)(n + 2)...2n ] chia hết cho (2.2.2...2) 
  • Bây giờ ta cần tìm số chữ số 2 trong cụm (2.2.2....2) 
  • Ta thấy: 2 -> 2n có (2n - 2)/2 + 1 = n chữ số => trong cụm (2.2.2...2) có n chữ số 2 (Vì trong mỗi số từ 2 -> 2n ta đều lấy ra 1 số 2) 
  • => [ (n + 1)(n + 2)...2n ] chia hết cho 2^n 
15 tháng 1 2017

Ta có: 1.3.5...(2n - 1) 
= { [1.3.5....(2n - 1)].(2.4.6...2n) }/(2.4.6...2n) 
= (1.2.3.4....2n)/[ (1.2).(2.2).(3.2)...(n.2) ] 
= {(1.2.3.4...n).[ (n + 1)(n + 2)...2n ] }/[ (1.2.3..n)(2.2.2...2) ] 
= [ (n + 1)(n + 2)...2n ]/(2.2.2...2) 
=> 1.3.5...(2n - 1) = [ (n + 1)(n + 2)...2n ]/(2.2.2...2) 
Do n ∈ Z+ => 1.3.5...(2n - 1) thuộc nguyên dương 
=> [ (n + 1)(n + 2)...2n ]/(2.2.2...2) thuộc nguyên dương 
=> [ (n + 1)(n + 2)...2n ] chia hết cho (2.2.2...2) 
Bây giờ ta cần tìm số chữ số 2 trong cụm (2.2.2....2) 
Ta thấy: 2 -> 2n có (2n - 2)/2 + 1 = n chữ số => trong cụm (2.2.2...2) có n chữ số 2 (Vì trong mỗi số từ 2 -> 2n ta đều lấy ra 1 số 2) 
=> [ (n + 1)(n + 2)...2n ] chia hết cho 2^n 

24 tháng 1 2024
seo mầy stupid như dậy  
đồ bú Thảo  
gửi câu hỏi hơi lâu  

 

12 tháng 3 2017

                                                                                        (3n+1)\(⋮\)(2n+3)

                                                                  =>[2(3n+1)-3(2n+3)]\(⋮\)(2n+3)

                                                                  =>       [6n+2-6n-9]   \(⋮\)(2n+3)

                                                                  =>               -7          \(⋮\)(2n+3)

                                                                  =>2n+3\(\in\)Ư(-7)={-1;-7;1;7}

Ta có bảng:

2n+3-1-717
n+371-7-1
n4-2-10-4

                                                                                       Vậy n\(\in\){4;-2;-10;-4}

                                                                                             (n2 +5)\(⋮\)(n+1)

                                                                           =>[(n2 +5)-n(n+1)]\(⋮\)(n+1)

                                                                           =>[n2+5-n2-1]       \(⋮\)(n+1)

                                                                          =>           4             \(⋮\)(n+1)

                                                                          =>n+1\(\in\)Ư(4)={-1;-2;-4;1;2;4}

Ta có bảng:

n+1-1-2-4124
n-2-3-5013

                                                                               Vậy n={-2;-3;-4;0;1;3}

Mik chỉ làm đc 2 câu thôi nếu đúng thì k cho mk nhé!