a/b^2+b/a^2+16/(a+b)>=5 (1/a+1/b+1 và a,b>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A\ge\frac{\left(1+1\right)^2}{2a+b+a+2b}=\frac{4}{3\left(a+b\right)}=\frac{4}{3.16}=\frac{1}{12}\) ( Cauchy-Schwarz dạng Engel )
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=8\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đề: Cho a > 0; b > 0 và a + b = 1.
Chứng minh rằng: \(\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2\ge\frac{25}{2}\)
~ ~ ~ ~ ~
Áp dụng BĐT \(x^2+y^2\ge\frac{1}{2}\left(x+y\right)^2\), ta có:
\(\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2\)
\(\ge\frac{1}{2}\left(a+b+\frac{1}{a}+\frac{1}{b}\right)^2\)
\(=\frac{1}{2}\left(1+\frac{a+b}{ab}\right)^2\)
\(\ge\frac{1}{2}\left(1+\frac{1}{\frac{\left(a+b\right)^2}{4}}\right)^2\)
\(=\frac{25}{2}\) (đpcm)
Dấu "=" xảy ra khi a = b = 0,5