K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2017

1+1+2+3+2=9

26 tháng 2 2017

bang 9

tk ung ho mk nha

7 tháng 2 2016

Xét số hạng tổng quát thứ n (n nguyên và n>1), ta có 
1/n(1+2+...+n)=[n(n+1)/2]/n= [n(n+1)]/(2n) 
Do đó 
B = 1 + 1/2 (1 + 2) + 1/3 (1 + 2 + 3) + 1/4 (1 + 2 + 3 +4) + ...+ 1/20 (1 + 2 +... + 20) 
=1 +[2(2+1)]/(2.2) +[3(3+1)]/(2.3) +[4(4+1)]/(2.4) +... +[20(20+1)]/(2.20) 
=1+3/2 +4/2 +5/2 +... +21/2 
=(2+3+4+5+...+20)/2=104,5 . TICH CHON MINH NHA CAC BAN THI CA NAM SE GAP NHIEU DIEU MAY MAN DAY

7 tháng 2 2016

Xét số hạng tổng quát thứ n (n nguyên và n>1), ta có 
1/n(1+2+...+n)=[n(n+1)/2]/n= [n(n+1)]/(2n) 
Do đó 
B = 1 + 1/2 (1 + 2) + 1/3 (1 + 2 + 3) + 1/4 (1 + 2 + 3 +4) + ...+ 1/20 (1 + 2 +... + 20) 
=1 +[2(2+1)]/(2.2) +[3(3+1)]/(2.3) +[4(4+1)]/(2.4) +... +[20(20+1)]/(2.20) 
=1+3/2 +4/2 +5/2 +... +21/2 
=(2+3+4+5+...+20)/2=104,5 

AH
Akai Haruma
Giáo viên
8 tháng 6 2021

Bạn vui lòng viết đề bằng công thức toán để được hỗ trợ tốt hơn.

 

14 tháng 10 2019

2 - 1 = 1     3 - 1 = 2     1 + 1 = 2     1 + 2 = 3

3 - 1 = 2     3 - 2 = 1     2 - 1 = 1     3 - 2 = 1

3 - 2 = 1     2 - 1 = 1     3 - 1 = 2     3 - 1 = 2

17 tháng 8 2023

2 - 1 = 1     3 - 1 = 2     1 + 1 = 2     1 + 2 = 3

3 - 1 = 2     3 - 2 = 1     2 - 1 = 1     3 - 2 = 1

3 - 2 = 1     2 - 1 = 1     3 - 1 = 2     3 - 1 = 2

ok nhá

 

30 tháng 11 2019

Lời giải chi tiết:

1 + 2 = 3 3 – 1 = 2 1 + 1 = 2 2 – 1 = 1
3 – 2 = 1 3 – 2 = 1 2 – 1 = 1 3 – 1 = 2
3 – 1 = 2 2 – 1 = 1 3 – 1 = 2 3 – 2 = 1
24 tháng 8 2021
1+2=33-1=21+1=22-1=1
3-2=13-2=12-1=13-1=2
3-1=22-1=13-1=23-2=1

#HT#

22 tháng 7 2023

1/

\(N=1.\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+...+99\left(100-1\right)=\)

\(=\left(1.2+2.3+3.4+...+99.100\right)-\left(1+2+3+...+99\right)=\)

Đặt 

\(A=1.2+2.3+3.4+...+99.100\)

\(3A=1.2.3+2.3.3+3.4.3+...+99.100.3=\)

\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100.\left(101-98\right)=\)

\(=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-98.99.100+99.100.101=\)

\(=99.100.101\Rightarrow A=\dfrac{99.100.101}{3}=33.100.101\)

Đặt

\(B=1+2+3+...+99=\dfrac{99.\left(1+99\right)}{2}=4950\)

\(\Rightarrow N=A-B\)

2/

Số hạng cuối cùng là 10000 hoặc 1000000 mới làm được

\(A=1^2+2^2+3^2+...+100^2\) 

Tính như câu 1

3/ Làm như bài 4

4/

\(S=1^2+3^2+5^2+...+99^2=\)

\(=1.\left(3-2\right)+3\left(5-2\right)+5\left(7-2\right)+...+99\left(101-2\right)=\)

\(=\left(1.3+3.5+5.7+...+99.101\right)-2\left(1+3+5+...+99\right)\)

Đặt

\(B=1+3+5+...+99=\dfrac{50.\left(1+99\right)}{2}=2500\) 

Đặt

\(A=1.3+3.5+5.7+...+99.101\)

\(6A=1.3.6+3.5.6+3.7.6+...+99.101.6=\)

\(=1.3.\left(5+1\right)+3.5.\left(7-1\right)+5.7.\left(9-3\right)+...+99.101.\left(103-97\right)=\)

\(=1.3+1.3.5-1.3.5+3.5.7-3.5.7+5.7.9-...-97.99.101+99.101.103=\)

\(=3+99.101.103\Rightarrow A=\dfrac{3+99.101.103}{6}\)

\(\Rightarrow S=A-2B\)

GH
22 tháng 7 2023

Bài 1:

\(N=1^2+2^2+3^3+...+99^2\)

\(N=1.1+2.2+3.3+...+99.99\)

\(N=1.\left(2-1\right)+2.\left(3-1\right)+3.\left(4-1\right)+...+99.\left(100-1\right)\)

\(N=1.2-1+2.3-2+3.4-3+...+99.100-99\)

\(N=\left(1.2+2.3+3.4+...+99.100\right)-\left(1+2+3+...+99\right)\)

Đặt \(\left\{{}\begin{matrix}A=1.2+2.3+3.4+...+99.100\\B=1+2+3+...+99\end{matrix}\right.\)

+) Tính \(A=1.2+2.3+3.4+...+99.100\)

Ta có:

\(3A=1.2.3+2.3.3+3.4.3+...+99.100.3\)

\(3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100.\left(101-98\right)\)

\(3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100\)

\(3A=99.100.101\)

\(\Rightarrow A=\dfrac{99.100.101}{3}=333300\)

+) Tính \(B=1+2+3+...+99\)

\(B\) có số số hạng là: \(\dfrac{99-1}{1}\) + 1 = 99 (số hạng)

\(\Rightarrow B=\dfrac{\left(99+1\right).99}{2}=4950\)

\(\Rightarrow N=A-B=333300-4950=328350\)

\(\Rightarrow N=328350\)

 

 

4 tháng 11 2023

Bài 1:

a, 3\(\dfrac{2}{5}\) - \(\dfrac{1}{2}\) 

\(\dfrac{17}{5}\) - \(\dfrac{1}{2}\) 

\(\dfrac{34}{10}\) - \(\dfrac{5}{10}\)

\(\dfrac{29}{10}\)

b, \(\dfrac{4}{5}\) + \(\dfrac{1}{5}\) x \(\dfrac{3}{4}\)

\(\dfrac{4\times4}{5\times4}\) + \(\dfrac{1\times3}{5\times4}\)

\(\dfrac{16}{20}\) + \(\dfrac{3}{20}\)

\(\dfrac{19}{20}\)

c, 4\(\dfrac{4}{9}\) : 2\(\dfrac{2}{3}\) + 3\(\dfrac{1}{6}\)

\(\dfrac{40}{9}\) : \(\dfrac{8}{3}\) + \(\dfrac{19}{6}\)

\(\dfrac{5}{3}\) + \(\dfrac{19}{6}\)

\(\dfrac{10}{6}\) + \(\dfrac{19}{6}\)

\(\dfrac{29}{6}\)

4 tháng 11 2023

Bài 2:

   3\(\dfrac{2}{5}\) + 2\(\dfrac{1}{5}\) 

\(\dfrac{17}{5}\) + \(\dfrac{11}{5}\)

\(\dfrac{28}{5}\)

b, 7\(\dfrac{1}{6}\) : 5\(\dfrac{2}{3}\)

\(\dfrac{43}{6}\) : \(\dfrac{17}{3}\)

\(\dfrac{43}{34}\)

  

22 tháng 12 2021
1+1=3--3+3=9--9+1=5
DD
4 tháng 3 2022

\(\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+...+20}\)

\(=\frac{2}{2\times3}+\frac{2}{3\times4}+...+\frac{2}{20\times21}\)

\(=2\times\left(\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{20\times21}\right)\)

\(=2\times\left(\frac{3-2}{2\times3}+\frac{4-3}{3\times4}+...+\frac{21-20}{20\times21}\right)\)

\(=2\times\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{20}-\frac{1}{21}\right)\)

\(=2\times\left(\frac{1}{2}-\frac{1}{21}\right)\)

\(=\frac{19}{21}\)