tim x dua vao quan he uoc boi:tim so tu nhien x sao cho x-1 la uoc cua 12tim so tu nhien x sao cho 2x+1 la uoc cua 28tim so tu nhien x sao cho x+15 la boi cua x+3tim cac so nguyen x,y sao cho (x+1)(y-2)=3tim so nguyen x sao cho(x+2).(y-1)=2tim so nguyen to x vua la uoc cua 275 vua la uoc cua 180tim so nguyen to x,y biet x+y=12 va UCLL (x:y)=5tim so tu nhien x,y biet x+y=32 va UCLL (x:y)=8tim so tu nhien x biet x chia het cho10; xchia het cho12; x chia het cho15 va 100<x<150tim so x nho nhat khac 0b...
Đọc tiếp
tim x dua vao quan he uoc boi:
tim so tu nhien x sao cho x-1 la uoc cua 12
tim so tu nhien x sao cho 2x+1 la uoc cua 28
tim so tu nhien x sao cho x+15 la boi cua x+3
tim cac so nguyen x,y sao cho (x+1)(y-2)=3
tim so nguyen x sao cho(x+2).(y-1)=2
tim so nguyen to x vua la uoc cua 275 vua la uoc cua 180
tim so nguyen to x,y biet x+y=12 va UCLL (x:y)=5
tim so tu nhien x,y biet x+y=32 va UCLL (x:y)=8
tim so tu nhien x biet x chia het cho10; xchia het cho12; x chia het cho15 va 100<x<150
tim so x nho nhat khac 0b biet x chia het cho 24 va 30
40 chia het cho x . 56 chia het cho x va x>6
\(\hept{\begin{cases}x=z^2+1\\y=x^2+1\\z=y^2+1\end{cases}}\)
Điều kiện có nghiệm: \(x,y,z\ge1\)(*)
Giả sử: \(x\ge y\ge z\)
Khi đó: \(x\ge y\Leftrightarrow z^2+1\ge x^2+1\Leftrightarrow z\ge x\)
Tương tự ta sẽ thu được: \(x\le y\le z\)
Vậy x=y=z
Thay vào ta được pt: \(x^2-x+1=0\)(vô nghiệm)
Vậy không tồn tại số thỏa mãn