Tìm x nguyên biết: \(-10\le x\le\frac{-11}{7}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3}{7}\cdot15\cdot\frac{1}{3}+\frac{3}{7}\cdot5\cdot\frac{2}{5}\le x\le\left(3\frac{1}{2}:7-6\frac{1}{2}\right)\cdot\left(-2\frac{1}{3}\right)\)
\(\Leftrightarrow\frac{15}{7}+\frac{6}{7}\le x\le-6\cdot\frac{-5}{3}\)
\(\Leftrightarrow3\le x\le10\)
Mà \(x\in Z\)
\(\Rightarrow x\in\left\{4;5;6;7;8;9\right\}\)
\(\frac{-5}{3}< \frac{7}{6}-\left(x-1\right)\le\frac{11}{12}\)
\(\Leftrightarrow\frac{-20}{12}< \frac{14}{12}-\frac{12\left(x-1\right)}{12}\le\frac{11}{12}\)
\(\Leftrightarrow-20< 14-12\left(x-1\right)\le11\)
\(\Leftrightarrow-20< 14-12x+12\le11\)
\(\Leftrightarrow-20< 26-12x\le11\)
\(\Leftrightarrow26-46< 26-12x\le26-15\)
\(\Leftrightarrow-46< 12x\le-15\)
\(\Leftrightarrow x\in\left\{2;3\right\}\)
Vậy x = 2 hoặc x = 3
ta có:\(\frac{-5}{3}\)<\(\frac{7}{6}\)-(x-1)<=\(\frac{11}{12}\)
=>\(\frac{-20}{12}\)<\(\frac{14}{12}\)-(x-1)<=\(\frac{11}{12}\)
=>\(\frac{-20}{12}\)<\(\frac{14}{12}\)-x+1<=\(\frac{11}{12}\)
=>\(\frac{-20}{12}\)<\(\frac{26}{12}\)-x<=\(\frac{11}{12}\)
=>\(\frac{26}{12}\)-x={-19/12,-18.12,-17/12......,11/12}
=>x={45/12,44/12,43/12........15/12}
=>x={45/12,22/6,43/12......5/4}
Vậy.............................
mik nghĩ zậy!!!!!
1)
\(\frac{7.8^3-5.2^{10}}{\left(-16\right)^2}\)
= \(\frac{7.2^8.2-5.2^8.2^2}{16^2}\)
= \(\frac{2^8.\left(2.7-5.2^2\right)}{2^8}\)
= \(\frac{2^8.\left(-6\right)}{2^8}\)
= \(-6\)
\(a)\frac{1}{3}+\frac{-2}{5}+\frac{1}{6}+\frac{-1}{5}\le x< \frac{-3}{4}+\frac{2}{7}+\frac{-1}{4}+\frac{3}{5}+\frac{5}{7}\)
\(\Rightarrow\frac{1}{3}+\frac{1}{6}+\frac{-2}{5}+\frac{-1}{5}\le x< \frac{-3}{4}+\frac{-1}{4}+\frac{2}{7}+\frac{5}{7}+\frac{3}{5}\)
\(\Rightarrow\frac{2}{6}+\frac{1}{6}+\frac{-3}{5}\le x< -1+1+\frac{3}{5}\)
\(\Rightarrow\frac{1}{2}+\frac{-3}{5}\le x< \frac{3}{5}\)
\(\Rightarrow\frac{-1}{10}\le x< \frac{6}{10}\)
\(\Rightarrow-1\le x< 6\)
\(\Rightarrow x\in\left\{-1;0;1;2;3;4;5\right\}\)
Bài b tương tự
=> \(-\frac{70}{7}\le\frac{7x}{7}\le-\frac{11}{7}\)
=> \(-70\le7x\le-11\)
=> 7x \(\in\) {-70; -69; -68; ...;-11}
Để x nguyên thì 7x \(\in\) B(7)
=> 7x \(\in\) {-70; -63; -56; -49;-42;-35;-28;-21;-14}
=> x \(\in\) {-10; -9; -8; -7; -6;-5;-4; -3;-2}