C = 3 - 32 + 33 - 34 +... + 32003 - 32004
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Nếu đúng là zậy thì mk biết làm.
A = 3 + 32 + 33 + ... + 32004
A = ( 3 + 32 + 33 + 34 ) + ... + ( 32001 + 32002 + 32003 + 32004 )
A = 3( 1 + 3 + 32 + 33 ) + ... + 32001( 1 + 3 + 32 + 39 )
A = 3.40 + ... + 32001.40
A = ( 3 + 35 + ... 32001) . 40
=> A chia hết cho 40
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{99}}\)
\(\Rightarrow\dfrac{A}{3}=\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\)
\(\Rightarrow A-\dfrac{A}{3}=\dfrac{2A}{3}=\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\dfrac{2A}{3}=\left(\dfrac{1}{3^2}-\dfrac{1}{3^2}\right)+\left(\dfrac{1}{3^3}-\dfrac{1}{3^3}\right)+...+\left(\dfrac{1}{3^{99}}-\dfrac{1}{3^{99}}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)=\dfrac{1}{3}-\dfrac{1}{3^{100}}\)
\(\Rightarrow2A=3\cdot\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\text{A}=\dfrac{1-\dfrac{1}{3^{99}}}{2}\)
\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2.3^{99}}< \dfrac{1}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(R=\sqrt{3}\)
\(AB=R\sqrt{3}=3\)
Có các mặt là tam giác đều
\(\Rightarrow SC=AB=BC=AC=3\)
\(H\) là tâm đường tròn ngoại tiếp đồng thời là chân đường cao :
\(\Rightarrow\Delta SHC\)vuông tại \(H\)
Áp dụng vào tam giác SHC định lý py-ta- go
\(\Rightarrow SH=\sqrt{SC^2-HC^2}=\sqrt{6}cm\)
\(S_{ABC}=\frac{1}{2}.AC.AB.sin\widehat{A}=\frac{1}{2}.3.3.\frac{\sqrt{3}}{2}=\frac{9\sqrt{3}}{4}\)
\(\Rightarrow S\)xung quanh hình chóp \(=4S_{ABC}=9\sqrt{3}\left(cm^2\right)\)
Câu hỏi của Chu Hà Gia Khánh - Tiếng Anh lớp 4 - Học trực tuyến OLM
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) 3^2 và 3.2
3^2=9
3.2=6
-> 3^2>3.2
b)2^3 và 3^2
2^3=8
3^2=9
-> 2^3<3^2
c) 3^3 và 3^4
Vì hai số có cùng cơ số nên ta so sánh số mũ
3<4
-> 3^3<3^4
a)ta có 32=9 ; 3.2=6 => 32 > 3.2
b)ta có 23=8 ; 32=9 => 23 < 32
c) ta có 33 và 34
vì 2 số đều cùng 1 cơ số
mà cơ số đầu có số mũ = 3,cơ số còn lại có lũy thừa =4
=> 3<4
=> 33<34
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\Leftrightarrow-B=1+3+3^2+...+3^{49}\\ \Leftrightarrow-3B=3+3^2+3^3+...+3^{50}\\ \Leftrightarrow-3B-B=3+3^2+...+3^{50}-1-3-...-3^{49}\\ \Leftrightarrow-4B=3^{50}-1\\ \Leftrightarrow B=\dfrac{1-3^{50}}{4}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
$T=3-3^2+3^3-3^4+....-3^{2000}$
$3T=3^2-3^3+3^4-3^5+...-3^{2001}$
$\Rightarrow T+3T=3-3^{2001}$
$\Rightarrow 4T=3-3^{2001}$
$\Rightarrow T=\frac{3-3^{2001}}{4}$
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=3^0+3^1+3^2+...+3^{138}\)
\(3\cdot A=3^1+3^2+3^3+...+3^{139}\)
\(A=(3^{139}-3^0):2\)
\(A=\left(3^{139}-1\right):2\)
Đặt A = 1 + 3 + 3² + 3³ + ... + 3¹³⁷ + 3¹³⁸
⇒ 3A = 3 + 3² + 3³ + 3⁴ + ... + 3¹³⁸ + 3¹³⁹
⇒ 2A = 3A - A
= (3 + 3² + 3³ + 3⁴ + ... + 3¹³⁸ + 3¹³⁹) - (1 + 3 + 3² + 3³ + ... + 3¹³⁷ + 3¹³⁸)
= 3¹³⁹ - 1
⇒ A = (3¹³⁹ - 1)/3
⇒ 1 + 3 + 3¹ + 3² + 3³ + ... + 3¹³⁷ + 3¹³⁸
= (3¹³⁹ - 1)/3 + 3
= (3¹³⁹ + 2)/3
C = 3 - 32 + 33 - 34 + ...... + 32003 - 32004
3C = 3(3 - 32 + 33 - 34 + ...... + 32003 - 32004)
= 32 - 33 + 34 - 35 + ....... + 32004 - 32005
C + 3C = (3 - 32 + 33 - 34 + ...... + 32003 - 32004) + (32 - 33 + 34 - 35 + ....... + 32004 - 32005)
4C = 3 - 32005
\(\Rightarrow C=\frac{3-3^{2005}}{4}=\frac{3}{4}\left(1-3^{2004}\right)\)