giải bpt: -6m-9<0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có 2 tường hợp :
-Trường hợp 1
x+\(\frac{1}{9}\)>0 <=> x>\(\frac{-1}{9}\)
2x-5<0 <=> 2x<-5 <=> x<\(\frac{-5}{2}\)
=> \(\frac{-5}{2}\)>x>\(\frac{-1}{9}\) (Vô lí, loại)
-Trường hợp 2
x+\(\frac{1}{9}\)<0 <=> x<\(\frac{-1}{9}\)
2x-5>0 <=> 2x>-5 <=> x>\(\frac{-5}{2}\)
=> \(\frac{-5}{2}\)<x<\(\frac{-1}{9}\) (Hợp lí, nhận)
Vậy tập nghiệm của BPT là {x/\(\frac{-5}{2}\)<x<\(\frac{-1}{9}\)}
\(\frac{-5}{2}\)
Vì a=1>0 nên để bpt có tập nghiệm R thì \(\Delta'\le0\)
\(\Leftrightarrow m^2-\left(6m-5\right)\le0\Leftrightarrow m^2-6m+5\le0\)
Lập bảng xét dấu suy ra \(1\le m\le5\)
Vậy có 5 giá trị nguyên của m để ...
1-3x<0
<=> -3x<-1
<=> x<\(\frac{-1}{-3}\)
<=> x<\(\frac{1}{3}\)
\(-x^2+6x-10< 0\)
\(\Leftrightarrow-\left(x^2-6x+10\right)< 0\)
\(\Leftrightarrow-\left(x^2-2.x.3+9+1\right)< 0\)
\(\Leftrightarrow-\left(x-3\right)^2-1< 0\) ( luôn đúng)
=> BPT vô số nghiệm
Bài làm:
a) Ta có: \(x^2+4\ge4>0\left(\forall x\right)\)
=> \(5x-2\le0\)
<=> \(5x\le2\)
=> \(x\le\frac{2}{5}\)
b) Ta có: \(x^2-2x+9=\left(x^2-2x+1\right)+8=\left(x-1\right)^2+8\ge8>0\left(\forall x\right)\)
=> \(3x+4\ge0\)
<=> \(3x\ge-4\)
=> \(x\ge-\frac{4}{3}\)
\(\frac{5x-2}{x^2+4}\le0\)
Vì x2 + 4 > 0 ∀ x
Nên ta chỉ cần xét 5x - 2 ≤ 0
<=> 5x ≤ 2
<=> x ≤ 2/5
Vậy nghiệm của bất phương trình là x ≤ 2/5
\(\frac{3x+4}{x^2-2x+9}\ge0\)
Ta có : x2 - 2x + 9 = ( x2 - 2x + 1 ) + 8 = ( x - 1 )2 + 8 ≥ 8 > 0 ∀ x
Nên ta chỉ cần xét 3x + 4 ≥ 0
<=> 3x ≥ -4
<=> x ≥ -4/3
Vậy nghiệm của bất phương trình là x ≥ -4/3
\(\left(4x-1\right)\left(x-5\right)< 0\)
\(\Leftrightarrow\hept{\begin{cases}4x-1>0\\x-5< 0\end{cases}}\) hoặc \(\hept{\begin{cases}4x-1< 0\\x-5>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>\frac{1}{4}\\x< 5\end{cases}}\) hoặc \(\hept{\begin{cases}x< \frac{1}{4}\\x>5\end{cases}}\) (loại)
\(\Leftrightarrow\frac{1}{4}< x< 5\)
Biểu diễn dễ mà, bạn tự biểu diễn nha (1/4 < x < 20/4)
\(\left(x^2+5\right)\left(2x+3\right)\left(3x-1\right)< 0\)
Do \(\left(x^2+5\right)>0\)
\(\Rightarrow bpt\Leftrightarrow\left(2x+3\right)\left(3x-1\right)< 0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x+3>0\\3x-1< 0\end{matrix}\right.\\\left\{{}\begin{matrix}2x+3< 0\\3x-1>0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>\frac{-3}{2}\\x< \frac{1}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}x< \frac{-3}{2}\\x>\frac{1}{3}\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\frac{-3}{2}< x< \frac{1}{3}\left(chon\right)\\\frac{1}{3}< x< \frac{-3}{2}\left(loai\right)\end{matrix}\right.\)
Vậy...
-6m-9<0
<=> -6m < 9
<=> m>\(\frac{-3}{2}\)
\(-6m-9< 0\Leftrightarrow-6m< 9\)
\(\Leftrightarrow m>-\frac{9}{6}=-\frac{3}{2}\)
Vậy tập nghiệm BFT là S = { -3/2 }