K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2017

\(n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

Dễ thấy (n-1)n(n+1) là tích của 3 số tự nhiên liên tiếp nên (n-1)n(n+1) chia hết cho 2 và 3

=>(n-1)n(n+1)(n2+1) chia hết cho 2 và 3 <=> n5-n chia hết cho 2 và 3 (*)

Xét 5 trường hợp: n=5k; n=5k+1; n=5k+2; n=5k+3; n=5k+4 bạn sẽ suy ra n5-n luôn chia hết cho 5 nhé

Kết hợp với phần (*) sẽ suy ra nó luôn chia hết cho 30

24 tháng 2 2017

cảm ơn bạn Trà My nhiều!

17 tháng 10 2015

n^5-n= (n-1)n(n+1)(n^2+1)

(n-1)n(n+1) tích 3 số tự nhiên liên tiếp chia hết cho 3(1)

(n-1)n tích 2 ssoo tự nhiên liên tiếp chia hết cho 2(2)

còn n^5 và có cùng chữ số tận cuunfg nên hiệu có chữ sô tận cùng là 0 chia hết cho 5(3)

từ (1)(2)(3) => chia hết cho 30

2 tháng 11 2021

\(n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)

Do \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\) là tích 5 số nguyên liên tiếp nên chia hết cho 5 và \(5n\left(n-1\right)\left(n+1\right)⋮5\forall n\in Z^+\)

\(\Rightarrow n^5-n⋮5\forall n\in Z^+\)

17 tháng 12 2014

a,60 chia hết cho 15 => 60n chia hết cho 15 ; 45 chia hết cho 15 => 60n+45 chia hết cho 15 (theo tính chất 1)

   60n chia hết cho 30 ; 45 không chia hết cho 30 => 60n+45 không chia hết cho 30 (theo tính chất 2)

b,Giả sử có số a thuộc N thoả mãn cả 2 điều kiện đã cho thì a=15k+6 (1) và a=9q+1.

Từ (1) suy ra a chia hết cho 3, từ (2) suy ra a không chia hết cho 3. Đó là điều vô lí. Vậy không có số tự nhiên nào thoả mãn đề.

c,1005 chia hết cho 15 => 1005a chia hết cho 15 (1)

   2100 chia hết cho 15 => 2100b chia hết cho 15 (2)

Từ (1) và (2) suy ra 1005a+2100b chia hết cho 15 (theo tính chất 1)

d,Ta có : n^2+n+1=nx(n+1)+1

nx(n+1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2 suy ra nx(n+1)+1 là một số lẻ nên không chia hết cho 2.

nx(n+1) là tích của 2 số tự nhiên liên tiếp nên không có tận cùng là 4 hoặc 9 nên nx(n+1)+1 không có tận cùng là 0 hoặc 5, do đó nx(n+1)+1 không chia hết cho 5.

10 tháng 6 2015

Mình xin trả lời ngắn gọn hơn!                                                                      a)60 chia hết cho 15=> 60n chia hết cho 15                                                   15 chia hết cho 15                                                                                       =>60n+15 chia hết cho 15.                                                                             60 chia hết cho 30=>60n chia hết cho 30                                                      15 không chia hết cho 30                                                                       =>60n+15 không chia hết cho 30                                             b)Gọi số tự nhiên đó là A                                                                           Giả sử A thỏa mãn cả hai điều kiện                                                           => A= 15.x+6 & = 9.y+1                                                                         Nếu A = 15x +6 => A chia hết cho 3                                                          Nếu A = 9y+1 => A không chia hết cho 3 => vô lí.=>                                    c) Vì 1005;2100 chia hết cho 15=> 1005a; 2100b chia hết cho 15.             => 1500a+2100b chia hết cho 15.                                                          d) A chia hết cho 2;5 => A chia hết cho 10.                                                 => A là số chẵn( cụ thể hơn là A là số có c/s tận cùng =0.)                    Nếu n là số chẵn => A là số lẻ. (vì chẵn.chẵn+chẵn+lẻ=lẻ)                           Nếu n là số lẻ => A là số lẻ (vì lẻ.lẻ+lẻ+lẻ=lẻ)                                       => A không chia hết cho 2;5

 

 

10 tháng 11 2015

chia hết cho 3: Tích của ba số tự nhiên liên tiếp

Chia hết cho 5: Tích của 5 số tự nhiên liên tiếp

23 tháng 1 2016

Ta có: 60n chia hết cho 15 và 45 chia hết cho 15 => 60n + 45 chia hết cho 15

lại có: 60n chia hết cho 30 và 45 không chia hết cho 30 => 60n +45 không chia hêt cho 30

23 tháng 1 2016

Ta có: 60n chia hết cho 15 (vì 60 chia hết cho 15)

          45 chia hết cho 15

\(\Rightarrow\) 60n + 45 chia hết cho 15

Ta có: 60n chia hết cho 30 ( vì 60 chia hết cho 30)

          45 không chia hết cho 30 

\(\Rightarrow\) 60n + 45 không chia hết cho 30 

Vậy với mọi n \(\in\) N thì 60n+45 chia hết cho 15 nhưng không chia hết cho 30

CÓ GÌ SAI SÓT MONG BẠN LƯỢNG THỨ


 

1 tháng 11 2021

Đặt P = n5 - 5n3 + 4n 

= n5 - n3 - 4n3 + 4n 

= n3(n2 - 1) - 4n(n2 - 1) 

= n3(n - 1)(n + 1) - 4n(n - 1)(n + 1) 

= (n - 1)n(n + 1)(n2 - 4) 

= (n - 2)(n - 1)n(n + 1)(n + 2) (tích 5 số nguyên liên tiếp) 

=> P \(⋮3;5;8\)

mà (3;5;8) = 1

=> P \(⋮3.5.8=120\)

17 tháng 10 2017

Theo bài ra ta có :

\(60n=15.4.n\Rightarrow60n⋮15\)

\(45=15.3\Rightarrow45⋮15\)

Vì : \(60n⋮15;45⋮15\)

\(\Rightarrow\left(60n+45\right)⋮15\left(đpcm\right)\)

Theo bài ra ta lại có :

\(60n=30.2.n\Rightarrow60n⋮30\)

\(45=30.1+15\Rightarrow45⋮̸30\)

Vì : \(60n⋮30;45⋮̸30\)

\(\Rightarrow\left(60n+45\right)⋮̸30\left(đpcm\right)\)

17 tháng 10 2017

Theo bài ra ta có :

60n = 15.4.n \(\Rightarrow60n⋮15\)

\(45=3.15\Rightarrow45⋮15\)

Lại có :

\(\left\{{}\begin{matrix}60n⋮15\\45⋮15\end{matrix}\right.\Rightarrow\left(60n+45\right)}⋮15\left(đpcm\right)\)

Theo bải ra ta có :

\(60n=30.2.n\Rightarrow60n⋮30\)

\(45=30.1+15\Rightarrow45⋮̸30\)

Lại có :

\(\left\{{}\begin{matrix}60n⋮30\\45⋮̸30\end{matrix}\right.\Rightarrow\left(60n+45\right)⋮̸}30\left(đpcm\right)\)