tìm các số nguyên n sao cho phân số sau có giá trị là số nguyên : 6/n-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để \(A\inℤ\)
\(\Rightarrow3⋮n-5\)
\(\Rightarrow n-5\inƯ\left(3\right)\)
\(\Rightarrow n-5\in\left\{1;-1;3;-3\right\}\)
Lập bảng xét các trường hợp :
\(n-1\) | \(1\) | \(3\) | \(-1\) | \(-3\) |
\(n\) | \(2\) | \(4\) | \(0\) | \(-2\) |
Vậy \(n\in\left\{2;4;0\right\}\)
b) Để \(\frac{n+9}{n-6}\inℕ\Leftrightarrow n+9⋮n-6\)
\(\Rightarrow n-6+15⋮n-6\)
Vì \(n-6⋮n-6\)
\(\Rightarrow15⋮n-6\)
\(\Rightarrow n-6\inƯ\left(15\right)\)
\(\Rightarrow n-6\in\left\{\pm1;\pm3;\pm5;\pm15\right\}\)
Lập bảng xét các trường hợp ta có:
\(n-6\) | \(1\) | \(-1\) | \(3\) | \(-3\) | \(5\) | \(-5\) | \(15\) | \(-15\) |
\(n\) | \(7\) | \(5\) | \(9\) | \(3\) | \(11\) | \(1\) | \(21\) | \(-9\) |
Vậy \(n\in\left\{7;5;9;3;11;1;21;-9\right\}\)
Tìm các số nguyên x sao cho các phân số sau có giá trị là một số nguyên:
a)n+4/1
b)n-2/4
c)6/n-1
d)n/n-2
a) Phân số \(\dfrac{n+4}{1}\) là số nguyên với mọi x nguyên
b) \(\dfrac{n-2}{4}\) là một số nguyên khi:
\(n-2\) ⋮ 4
⇒ n - 2 ∈ B(4)
⇒ n ∈ B(4) + 2
c) \(\dfrac{6}{n-1}\) là một số nguyên khi:
6 ⋮ n - 1
\(\Rightarrow n-1\inƯ\left(6\right)=\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
\(\Rightarrow n\in\left\{2;0;3;-1;4;-2;7;-5\right\}\)
d) \(\dfrac{n}{n-2}=\dfrac{n-2+2}{n-2}=1+\dfrac{2}{n-2}\)
Để bt nguyên thì \(\dfrac{2}{n-2}\) phải nguyên:
\(\Rightarrow\text{2}\) ⋮ n - 2
\(\Rightarrow n-2\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)
\(\Rightarrow n\in\left\{3;1;4;0\right\}\)
a) Để 3 n − 3 là số nguyên thì 3 chia hết cho (n - 3) hay (n-3) ÎƯ(3)
=> ( n – 3) Î{-3;-1;1;3} => n Î{-6;-4;-2;0}
b) ( n – 1) ÎƯ (3) = {-3;-1;1;3} => n Î{-2;0;2;4}
c) (3n +1) ÎƯ (4) {-4;-2;-1;1;2;4}
Vì n Î Z nên sau khi tính ta thu được nÎ{-1; 1}
Với n≠-2,n∈Z. Để 4/n+2 có giá trị là số nguyên thì 4⋮n+2
⇒n+2 ∈ Ư(4)={1;2;4;-1;-2;-4}
Nếu n+2=1⇒n=-1(TMĐK)
Nếu n+2=2⇒n=0(TMĐK)
Nếu n+2=4⇒n=2(TMĐK)
Nếu n+2=-1⇒n=-3(TMĐK)
Nếu n+2=-2⇒n=-4(TMĐK)
Nếu n+2=-4⇒n=-6(TMĐK)
Vậy với n ∈ {-1;0;2;-3;-4;-6} thì 4/n+2 có giá trị nguyên.
\(\dfrac{2n+5}{n-3}=\dfrac{\left(2n-6\right)+11}{n-3}=\dfrac{2\left(n-3\right)+11}{n-3}=2+\dfrac{11}{n-3}\)
Để biểu thức trên là số nguyên thì \(\dfrac{11}{n-3}\) nguyên\(\Rightarrow11⋮\left(n-3\right)\)\(\Rightarrow n-3\inƯ\left(11\right)\)
Ta có bảng:
n-3 | -11 | -1 | 1 | 11 |
n | -8 | 2 | 4 | 14 |
Vậy \(n\in\left\{-8;2;4;14\right\}\)
\(\dfrac{2n+5}{n-3}=2+\dfrac{11}{n-3}\left(n\ne3\right).\)
Để \(\dfrac{2n+5}{n-3}\in Z.\Leftrightarrow n-3\inƯ\left(11\right)\) \(=\left\{1;-1;11;-11\right\}.\)
\(\Rightarrow n\in\left\{4;2;14;-8\right\}.\)
Để phân số 6 n - 1 có giá trị là số nguyên
thì 6 ⋮ (n - 1)
⇒ (n – 1) ∈ Ư(6) = {±1; ±2; ±3; ±6}
Ta có bảng sau:
n - 1 | -1 | 1 | 2 | -2 | 3 | -3 | 6 | -6 |
n | 0 | 2 | 3 | -1 | 4 | -2 | 7 | -5 |
Kết hợp với điều kiện n là số tự nhiên
⇒ n ∈ {0; 2; 3; 4; 7}
Vậy n ∈ {0; 2; 3; 4; 7}.
a) n + 4/ n + 3 là số nguyên
=> n + 4 chia hết n + 3
=> (n + 3) + 1 chia hết n + 3
=> n + 3 chia hết n + 3 và 1 chia hết n + 3
=> n + 3 thuộc ước của 1 = ( 1:-1)
ta có bảng n+ 3 1 -1
n -2 -4
b) n-1/n-3 là một số nguyên
=> n – 1 chia hết n – 3
=> (n – 3) + 2 chia hết n – 3
=>n-3 chia hết n - 3 và 2 chia hết n - 3
=> n – 3 thuộc ước của 2(1;-1;2;-2)
Ta có bảng
n-3 1 -1 2 -2
n 4 2 5 1
a: Để A là phân số thì n-2<>0
=>n<>2
Khi n=-2 thì \(A=\dfrac{2\cdot\left(-2\right)+1}{-2-2}=\dfrac{-3}{-4}=\dfrac{3}{4}\)
b: Để A nguyên thì 2n+1 chia hết cho n-2
=>2n-4+5 chia hết cho n-2
=>\(n-2\in\left\{1;-1;5;-5\right\}\)
=>\(n\in\left\{3;1;7;-3\right\}\)
Nếu viết thêm chữ số 4 vào bên phải số thứ nhất thì số thứ hai gấp 10 lần số thứ nhất và 4 đơn vị
Tổng hai số là:
225 x 2 = 450
Tổng số phần bằng nhau là:
10 + 1 = 11 phần
Số thứ nhất là:
(450- 4) : 11 = 40,54
Số thứ hai là:
450 - 40,54 = 409,46
Em gửi câu trả lời đúng với nội dung câu hỏi nhé