K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 9 2021

a. 

Đề bài sai, ví dụ \(n=1\) lẻ nhưng  \(1^2+4.1+8=13\) ko chia hết cho 8

b.

n lẻ \(\Rightarrow n=2k+1\)

\(n^3+3n^2-n-3=n^2\left(n+3\right)-\left(n+3\right)=\left(n^2-1\right)\left(n+3\right)=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)

\(=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)

\(=8k\left(k+1\right)\left(k+2\right)\)

Do \(k\left(k+1\right)\left(k+2\right)\) là tích 3 số tự nhiên liên tiếp nên chia hết cho 6

\(\Rightarrow8k\left(k+1\right)\left(k+2\right)\) chia hết cho 48

16 tháng 11 2015

a. Ta có:

\(\left(n+3\right)^2-\left(n-1\right)^2=\left(n+3-n+1\right)\left(n+3+n-1\right)=4\left(2n+2\right)=8n+8=8\left(n+1\right)\)chia hết cho \(8\)

b. Đặt \(M=n^3+3n^2-3-n\), ta có:

\(M=n^2\left(n+3\right)-\left(n+3\right)=\left(n+3\right)\left(n^2-1\right)=\left(n+3\right)\left(n-1\right)\left(n+1\right)\)

Vì  \(n\) là một số lẻ nên 

 \(\left(n-1\right)\left(n+1\right)\) chia hết cho \(8\) (vì là tích của hai số chẵn liên tiếp)

và  \(n+3\) là số chẵn nên chia hết cho \(2\) 

Do đó: \(M\)chia hết cho  \(8.2=16\)  \(\left(\text{*}\right)\)

Mặt khác: \(M=n^3+3n^2-3-n=n\left(n^2-1\right)+3\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)+3\left(n^2-1\right)\)

Xét trường hợp:

+)  \(n=3k\Rightarrow n\left(n-1\right)\left(n+1\right)\) chia hết cho  \(3\)  \(\Rightarrow M\) chia hết cho  \(3\)

+) \(n=3k+1\Rightarrow\left(n-1\right)\) chia hết cho  \(3\)  \(\Rightarrow M\) chia hết cho  \(3\)

+) \(n=3k+2\Rightarrow\left(n+1\right)\) chia hết cho \(3\)  \(\Rightarrow M\) chia hết cho  \(3\)

nên  \(M\) chia hết cho  \(3\) \(\left(\text{**}\right)\)

Lại có: \(\left(16;3\right)=1\) \(\left(\text{***}\right)\)

Từ \(\left(\text{*}\right)\) , \(\left(\text{**}\right)\) ,  \(\left(\text{***}\right)\) suy ra  \(M\) chia hết  \(48\) với \(n\) lẻ

16 tháng 11 2015

tick cho mình rồi mình làm cho

26 tháng 11 2017

vi (n+3)(n-1)(n+1) chia het cho 48

nen (n+3)(n-1)(n+1) chia het cho 48

Vay (n+3)(n-1)(n+1) chia het cho 48

3 tháng 10 2019

n^2(n-3)-(n-3)=(n-3)(n^2-1)=(n-3)(n-1)(n+1)

Có: (n-1)(n+1) là tích 2 số chắn liên tiếp=> (n-1)(n+1) chia hết cho 8

n lẻ=> n-3 chẵn=> n-3 chia hết cho 2

=> (n-3)(n-1)(n+1) chia hết cho 2*8=16(1)

Mặt khác n^3-3n^2-n+3 = n(n^2-1)-3(n^2-1)=n(n-1)(n+1)-3(n^2-1)

thấy n(n-1)(n+1) là tích 3 stn liên tiếp => n(n-1)(n+1) chia hết cho 3

lại có: 3(n^2-1) chia hết cho 3

=> n^3-3n^2-n+3 chia hết cho 3(2)

(1)(2)=>n^3-3n^2-n+3 chia hết cho 48

3 tháng 10 2019

n^3-3n^2-n+3=(n^3-n)-3(n^2-1)=n(n^2-1)-3(n^2-1)=(n-3)(n-1)(n+1)

n lẻ nên có dạng n=2k+1 (k \(\in N\)) thay vào trên ta được

(2k-2)2k(2k+2)=8(k-1)k(k+1) chia hết cho 48 nếu (k-10k(k+10 chia hết cho 6

Thật vậy

(k-1)k(K+1) là 3 số liên tiếp nên luôn tồn tại một số chia hết cho 3

(k-1)k(k+1) cũng luôn tồn tại ít nhất một số chia hết cho 2

vậy (k-1)k(k+1) chia hết cho 6 (chứng minh xong)

10 tháng 8 2017

1/ \(A=n^4-1=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

\(\left(n,3\right)=1\) nên \(n⋮̸3\) nên n chia 3 dư 1 hoặc dư 2

- Nếu n chia 3 dư 1 thì \(\left(n-1\right)⋮3\Rightarrow A⋮3\)

- Nếu n chia 3 dư 2 thì \(\left(n+1\right)⋮3\Rightarrow A⋮3\)

Như vậy \(A⋮3\)

Lại có n lẻ nên n-1 và n+1 là 2 số chẵn liên tiếp \(\Rightarrow\left[\left(n-1\right)\left(n+1\right)\right]⋮8\) (1)

Mặt khác n lẻ \(\Rightarrow\left(n^2+1\right)⋮2\) (2)

Từ (1) và (2) suy ra \(\Rightarrow\left[\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\right]⋮16\)

Hay \(A⋮16\)

Ta có \(A⋮3;A⋮16\), mà (3;16) = 1 nên \(A⋮48\)

2/ \(B=n^4-1=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

- Chứng minh \(B⋮16\) tương tự như ở câu 1

- Ta sẽ đi chứng minh \(B⋮5\)

+ Nếu n chia 5 dư 1 thì \(\left(n-1\right)⋮5\Rightarrow B⋮5\)

+ Nếu n chia 5 dư 4 thì \(\left(n+1\right)⋮5\Rightarrow B⋮5\)

+ Nếu n chia 5 dư 2 hoặc dư 3 thì \(\left(n^2+1\right)⋮5\Rightarrow B⋮5\)

Do đó \(B⋮5\)

Kết hợp với \(B⋮16\) ở trên suy ra \(B⋮80\)

10 tháng 8 2017

4. \(D=n^8-n^4=n^4\left(n^4-1\right)=n^3\left(n-1\right).n.\left(n+1\right)\left(n^2+1\right)\)

- Dễ thấy n-1, n, n+1 là 3 số nguyên liên tiếp nên \(D⋮3\)

- Chứng minh \(D⋮5\)

+ Nếu \(n⋮5\) thì \(D⋮5\)

+ Nếu n chia 5 dư 1;2;3;4 thì ... (tương tự câu 2)

- Chứng minh \(D⋮16\)

+ Nếu n chẵn thì \(n^4⋮16\Rightarrow D⋮16\)

+ Nếu n lẻ, cmtt câu 1

Ta có (16;3;5) = 1 nên \(D⋮\left(16.3.5\right)=240\)

3. \(C=n^6+n^4-2n^2=n^2\left(n^4+n^2-2\right)\)

\(=n^2\left(n^2-1\right)\left(n^2+2\right)=n^2\left(n-1\right)\left(n+1\right)\left(n^2+2\right)\)

- Chứng minh \(C⋮8\)

+ Nếu n chẵn thì \(n^2⋮4\)\(\left(n^2+2\right)⋮2\) \(\Rightarrow\left[n^2\left(n+2\right)\right]⋮8\) nên \(C⋮8\)

+ Nếu n lẻ thì n-1 và n+1 là 2 số chẵn liên tiếp \(\Rightarrow\left[\left(n-1\right)\left(n+1\right)\right]⋮8\Rightarrow C⋮8\)

- Chứng minh \(C⋮9\)

+ Dễ thấy \(\left[n\left(n-1\right)\left(n+1\right)\right]⋮3\) (1)

+ Ta sẽ chứng minh \(\left[n\left(n^2+2\right)\right]⋮3\)

Nếu \(n⋮3\) thì \(\left[n\left(n^2+2\right)\right]⋮3\)

Nếu n chia 3 dư 1 hoặc 2 thì \(\left[n\left(n^2+2\right)\right]⋮3\)

Vậy \(\left[n\left(n^2+2\right)\right]⋮3,\forall n\in Z\) (2)

Từ (1) và (2) suy ra \(\left[n\left(n-1\right)\left(n+1\right)\right].\left[n\left(n^2+2\right)\right]⋮\left(3.3\right)=9\)

Hay \(C⋮9\)

Ta có \(C⋮8\)\(C⋮9\), mà (8;9) = 1 nên \(C⋮72\)

23 tháng 10 2019

Câu hỏi của Lưu Thanh Vy - Toán lớp 8 - Học toán với OnlineMath

Em tham khaoe link trên.

18 tháng 9 2019

Ta có: \(n^3+3n^2-n-3\)

\(=\left(n^3+3n^2\right)-\left(n+3\right)\)

\(=n^2\left(n+3\right)-\left(n+3\right)\)

\(=\left(n+3\right)\left(n^2-1\right)\)

\(=\left(n+3\right)\left(n-1\right)\left(n+1\right)\text{ (1)}\)

\(\text{Vì n = 2k + 1 (số lẻ) nên }\hept{\begin{cases}n+3=2k+1+3=2k+4\\n-1=2k+1-1=2k\\n+1=2k+1+1=2k+2\end{cases}}\)

\(\text{(1) = }\left(2k+4\right)\left(2k\right)\left(2k+2\right)\)

\(=2.\left(k+2\right).2k.2.\left(k+1\right)\)

\(=8k.\left(k+2\right)\left(k+1\right)\)

\(\text{Ta thấy }8k\left(k+1\right)\left(k+2\right)\text{chia hết cho 2 và chia hết cho 8}\)

\(\text{Nên }8k\left(k+1\right)\left(k+2\right)\text{ chia hết cho 16 (8 x 2 =16) (2)}\)

\(\text{Mà }k\left(k+1\right)\left(k+2\right)\text{ là tích của 3 số tự nhiện liên tiếp }\)

\(\text{Nên }k\left(k+1\right)\left(k+2\right)\text{ chia hết cho 3}\)

\(\text{Hay }8k\left(k+1\right)\left(k+2\right)\text{ chia hết cho 3 (3)}\)

\(\text{Từ (2) và (3) suy ra: }8k\left(k+1\right)\left(k+2\right)\text{ chia hết cho 48 (16 x 3 = 48)}\)

                                \(\text{hay }n^3+3n^2-n-3\text{ chia hết cho 48 }\left(\text{ĐPCM}\right)\)

18 tháng 9 2019

Ta có:

 \(n^3+3n^2-n-3=n^2\left(n+3\right)-\left(n+3\right)=\left(n+3\right)\left(n^2-1\right)=\left(n+3\right)\left(n-1\right)\left(n+1\right)\)

Với n=2k+1. Do đó ta có:

\(n^3+3n^2-n-3=\left(2k+1+3\right)\left(2k+1-1\right)\left(2k+1+1\right)=\left(2k+4\right)\left(2k+2\right)\left(2k\right)\)

\(=8\left(k+2\right)\left(k+1\right)k\)

Vì \(k;\left(k+1\right)\)là hai số tự nhiên liên tiếp => \(k\left(k+1\right)⋮2\)

Vì \(k;\left(k+1\right);\left(k+2\right)\)là ba số tự nhiên liên tiếp => \(k\left(k+1\right)\left(k+2\right)⋮3\)

mà (2; 3) =1

=> \(k\left(k+1\right)\left(k+2\right)⋮6\)

=> \(8k\left(k+1\right)\left(k+2\right)⋮48\)

5 tháng 4 2017

1)

a)251-1

=(23)17-1\(⋮\)23-1=7

Vậy 251-1\(⋮\)7

b)270+370

=(22)35+(32)35\(⋮\)22+32=13

Vậy 270+370\(⋮\)13

c)1719+1917

=(BS18-1)19+(BS18+1)17

=BS18-1+BS18+1

=BS18\(⋮\)18

d)3663-1\(⋮\)35\(⋮\)7

Vậy 3663-1\(⋮\)7

3663-1

=3663+1-2

=BS37-2\(⋮̸\)37

Vậy 3663-1\(⋮̸\)37

e)24n-1

=(24)n-1\(⋮\)24-1=15

Vậy 24n-1\(⋮\)15

13 tháng 8 2019

BS là gì vậy bạn???