K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
6 tháng 12 2022

Lời giải:
Gọi ƯCLN$(2n+1, 7n+6)=d$

Ta có:

$2n+1\vdots d$

$7n+6\vdots d$

$\Rightarrow 2(7n+6)-7(2n+1)\vdots d$

$\Rightarrow 5\vdots d$

$\Rightarrow d=1$ hoặc $d=5$

Vì $2n+1, 7n+6$ không nguyên tố cùng nhau nên $d=5$

Vậy $ƯCLN(2n+1, 7n+6)=5$

27 tháng 12 2021

Vì 2n+1 và 7n+6 là 2 số nguyên tố cùng nhau

=> ƯCLN(2n+1;7n+6) = 1

Vậy ƯCLN của 2n+1 và 7n+6 là 1

_HT_

15 tháng 12 2023

Gọi d là UC của 2n+1 và 7n+6 nên

\(2n+1⋮d\Rightarrow7\left(2n+1\right)=14n+7⋮d\)

\(7n+6⋮d\Rightarrow2\left(7n+6\right)=14n+12⋮d\)

\(\Rightarrow\left(14n+12\right)-\left(14n+7\right)=5⋮d\Rightarrow d=\left(-5;-1;1;5\right)\)

=> UCLN(2n+1;7n+6)=5

AH
Akai Haruma
Giáo viên
30 tháng 7 2024

Lời giải:

Gọi $d=ƯCLN(2n+1, 7n+2)$

$\Rightarrow 2n+1\vdots d; 7n+2\vdots d$

$\Rightarrow 7(2n+1)-2(7n+2)\vdots d$

$\Rightarrow 3\vdots d$

Để 2 số trên nguyên tố cùng nhau thì $(3,d)=1$

$\Rightarrow 2n+1\not\vdots 3\Rightarrow 2n-2\not\vdots 3$

$\Rightarrow 2(n-1)\not\vdots 3$

$\Rightarrow n-1\not\vdots 3$

$\Rightarrow n\neq 3k+1$ với $k$ tư nhiên.

Mà $10< n< 1000$ nên:

$n\neq \left\{13; 16; 19; 22;....; 997\right\}$

8 tháng 7 2018

Để 2n+1 và 7n+2 là hai số nguyên tố cùng nhau

<=> ƯCLN(2n+1;7n+2) = 1

<=> 7.(2n+1)-2.(7n+2) chia hết cho 1

<=> 14n+7-14n-4 chia hết cho 1

<=> 3 chia hết cho 1

Vậy n = 3 (thỏa mãn \(n\in N\) )

mik thấy câu rả lời này nhiều lắm,chắc các bn copy của nhau chớ gì.mik cần câu trả lời tự làm của các bn nhưng phải chi tiết ,rõ ràng và chính xác

28 tháng 7 2015

Để 2n + 1 và 7n + 2 nguyên tố cùng nhau

<=> ƯCLN(2n + 1; 7n + 2) = 1

<=> 7.(2n + 1) - 2.(7n + 2) chia hết cho 1

<=> 14n + 7 - 14n + 4 chia hết cho 1

<=> 3 chia hết cho 1

Vậy n = 3 

17 tháng 11 2016

n là 3