Gia trị lớn nhất của Q: -(x-7)^2-6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 1) ta có : \(M=\left(x^2-x\right)^2+\left(2x-1\right)^2=x^4-2x^3+x^2+4x^2-4x+1\)
\(=\left(x^2-x+2\right)^2-3=\left(\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}\right)^2-3\)
\(\Rightarrow\dfrac{1}{16}\le M\le61\)
\(\Rightarrow M_{min}=\dfrac{1}{16}\)khi \(x=\dfrac{1}{2}\) ; \(M_{max}=61\) khi \(x=3\)
câu 2) điều kiện xác định : \(0\le x\le2\)
đặt \(\sqrt{2x-x^2}=t\left(t\ge0\right)\)
\(\Rightarrow M=-t^2+4t+3=-\left(t-2\right)^2+7\)
\(\Rightarrow3\le M\le7\)
\(\Rightarrow M_{min}=3\)khi \(x=0\) ; \(M_{max}=7\) khi \(x=2\)câu 3) ta có : \(M=\left(x-2\right)^2+6\left|x-2\right|-6\ge-6\)
\(\Rightarrow M_{min}=-6\) khi \(x=2\)
4) điều kiện xác định \(-6\le x\le10\)
ta có : \(M=5\sqrt{x+6}+2\sqrt{10-x}-2\)
áp dụng bunhiacopxki dạng căn ta có :
\(-\sqrt{\left(5^2+2^2\right)\left(x+6+10-x\right)}\le5\sqrt{x+6}+2\sqrt{10-x}\le\sqrt{\left(5^2+2^2\right)\left(x+6+10-x\right)}\)
\(\Leftrightarrow-4\sqrt{29}\le5\sqrt{x+6}+2\sqrt{10-x}\le4\sqrt{29}\)
\(\Rightarrow-2-4\sqrt{29}\le B\le-2+4\sqrt{29}\)
\(\Rightarrow M_{max}=-2+4\sqrt{29}\) khi \(\dfrac{\sqrt{x+6}}{5}=\dfrac{\sqrt{10-x}}{2}\Leftrightarrow x=\dfrac{226}{29}\)
\(\Rightarrow M_{min}=-2-4\sqrt{29}\) dấu của bđt này o xảy ra câu 5 lm tương tự
Xét x>7 thì A<0(1)
Xét x<7 thì mẫu 7-x là số nguyên dương . Phân số A có tử và mẫu đều dương, tử ko đổi nên
A lớn nhất <=> mẫu 7-x nhỏ nhất <=> 7-x=1<=>x=6. khi đóA=1(2)
so sánh 1 và 2 , ta thấy GTLN của A =1 khi và chỉ khi x=6
Câu 1 mình nghĩ nó khá đơn giản rồi, bạn tính ra ngay thôi
Câu 2: Mình nghĩ là tìm min chứ ko phải max
Vì \(\left(-\frac{2}{3}+\frac{1}{2}x\right)^2\ge0\Rightarrow A=\left(-\frac{2}{3}+\frac{1}{2}x\right)^2-2,5\ge2,5\)
\(\Rightarrow A_{min}=2,5\Leftrightarrow\left(-\frac{2}{3}+\frac{1}{2}x\right)^2=0\Leftrightarrow-\frac{2}{3}+\frac{1}{2}x=0\Leftrightarrow\frac{1}{2}x=\frac{2}{3}\Leftrightarrow x=\frac{4}{3}\)
A đạt giá trị nhỏ nhất là 2,5 khi x=4/3
Câu 3:
\(x=\frac{26}{7+b}\) âm khi 7+b âm <=> 7+b<0 <=> b<-7
vì b là số nguyên lớn nhất nên b=-8
Lời giải:
Ta có:
\(A=7\sqrt{x}-x-6=-(x-7\sqrt{x}+6)\)
\(=-[(\sqrt{x})^2-2.\frac{7}{2}\sqrt{x}+\left(\frac{7}{2}\right)^2-\frac{25}{4}]\)
\(=-[(\sqrt{x}-\frac{7}{2})^2-\frac{25}{4}]=\frac{25}{4}-(\sqrt{x}-\frac{7}{2})^2\)
Vì \((\sqrt{x}-\frac{7}{2})^2\geq 0, \forall x\geq 0\) do đó: \(A=\frac{25}{4}-(\sqrt{x}-\frac{7}{2})^2\leq \frac{25}{4}\)
Vậy $A$ đạt GTLN bằng $\frac{25}{4}$ tại \(\sqrt{x}-\frac{7}{2}=0\Leftrightarrow x=\frac{49}{4}\)
GTLN của Q là -42
-(x-7)2<hoặc = 0 với mọi x
-(x-7)2-6<hoặc = -6 với mọi x
vậy GTLN của Q là -6