Tìm x
a. ( x + 5). ( x + 12) < 0
b.( x + 3). ( x +17) < 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời:
1) \(0< x-1\le2\)
\(\Rightarrow x-1\in\left\{1;2\right\}\)
\(\Rightarrow x\in\left\{2;3\right\}\)
#Huyền Anh
2) \(3\le x-2< 5\)
\(\Rightarrow x-2\in\left\{3;4\right\}\)
\(\Rightarrow x\in\left\{5;6\right\}\)
#Huyền Anh
1.
a)\(0< x-1\le2\)
Mà \(x\in Z\)
\(\Rightarrow x-1\in Z\)
\(\Rightarrow x-1=1\)
\(\Rightarrow x=2\in Z\)
Vậy x=2
Các phần khác bn làm tương tự nha
d)\(\left|x\right|< 3\)
\(\Rightarrow-3< x< 3\)
\(\Rightarrow x\in\left\{-2;-1;0;1;2\right\}\)
Vậy \(x\in\left\{-2;-1;0;1;2\right\}\)
2.
c)Các phần a,b bn tự làm nha
3-|2x+1|=(-5)
\(\Rightarrow\left|2x+1\right|=3-\left(-5\right)\)
\(\Rightarrow\left|2x+1\right|=3+5\)
\(\Rightarrow\left|2x+1\right|=8\)
\(\Rightarrow2x+1=8\) hoặc \(2x+1=-8\)
\(\Rightarrow2x=8-1\) \(\Rightarrow2x=-8-1\)
\(\Rightarrow2x=7\) \(\Rightarrow2x=-9\)
\(\Rightarrow x=\frac{7}{2}=3,5\notin Z\) \(\Rightarrow x=\frac{-9}{2}=-4,5\in Z\)
Vậy \(x\in\varnothing\)
Chúc bn học tốt
\(a,=3x-9-4x+12=-x+3=0\)
\(\Leftrightarrow x=3\)
Vậy ..
\(b,=\left(x+2\right)\left(x+2-x+2\right)=4\left(x+2\right)=0\)
\(\Leftrightarrow x+2=0\)
\(\Leftrightarrow x=-2\)
Vậy ..
\(c,=x^3-3x^2+3x-1=\left(x-1\right)^3=0\)
\(\Leftrightarrow x=1\)
Vậy ..
\(d,\Leftrightarrow x\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
Vậy ..
\(e,=\left(2x-3-5\right)\left(2x-3+5\right)=\left(2x-8\right)\left(2x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{8}{2}=4\\x=-\dfrac{2}{2}=-1\end{matrix}\right.\)
Vậy ...
a) Ta có: 3(x-3)-4x+12=0
\(\Leftrightarrow3\left(x-3\right)-4\left(x-3\right)=0\)
\(\Leftrightarrow x-3=0\)
hay x=3
Vậy: S={3}
b) Ta có: \(\left(x+2\right)^2-\left(x+2\right)\left(x-2\right)=0\)
\(\Leftrightarrow x^2+4x+4-x^2+4=0\)
\(\Leftrightarrow4x=-8\)
hay x=-2
Vậy: S={-2}
c) Ta có: \(x^3+3x=3x^2+1\)
\(\Leftrightarrow x^3-3x^2+3x-1=0\)
\(\Leftrightarrow x-1=0\)
hay x=1
Vậy: S={1}
d) Ta có: \(\dfrac{2}{3}x\left(x^2-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
Vậy: S={0;2;-2}
14) (x - 2) . (x + 4) = 0
\(\Rightarrow\) x - 2 = 0 hoặc x + 4 = 0
Nếu x - 2 = 0
x = 0 + 2
x = 2
Nếu x + 4 = 0
x = 0 - 4
x = -4
Vậy x \(\in\) {2 ; -4)
15) (x - 2) . (x + 15) = 0
\(\Rightarrow\) x - 2 = 0 hoặc x + 15 = 0
Nếu x - 2 = 0
x = 0 + 2
x = 2
Nếu x + 15 = 0
x = 0 - 15
x = -15
Vậy x \(\in\) {-15 ; 2}
ta thấy (x+5) và (x+12) là hai số khác dấu
\(\rightarrow\)ta có 2 trường hợp
mà ta thấy 12>5
\(\rightarrow\)x+12>x+5
\(\rightarrow\)ta có trường hợp
:\(\orbr{\begin{cases}\left(x+5\right)< 0\\\left(x+12\right)>0\end{cases}}\)
\(\rightarrow\)\(\orbr{\begin{cases}x< -5\\x>-12\end{cases}}\)\(\rightarrow\)-5>x>-12 \(\rightarrow\)x \(\in\){-11;-10;-9;-8;-7;-6}
vậy x thuộc {-11;-10;-9;-8;-7;-6}
b
tả thầy (x+3) và (x+17) là hai số khác dấu
mà ta thấy 3<17
\(\rightarrow\)x+3<x+17
ta co
\(\orbr{\begin{cases}\left(x+3\right)< 0\\\left(x+17\right)>0\end{cases}}\)\(\rightarrow\)\(\orbr{\begin{cases}x< -3\\x>-17\end{cases}}\)\(\rightarrow\)-3>x>-17
vậy -3>x>-17