K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2017

\(A=\frac{2m-7}{m+1}=\frac{2m+2-9}{m+1}=\frac{2\left(m+1\right)-9}{m+1}=2-\frac{9}{m+1}\)

Để \(2-\frac{9}{m+1}\) là số nguyên <=> \(\frac{9}{m+1}\) là Số nguyên

=> m + 1 ∈ Ư(9) = { ± 1; ± 3; ± 9 }

m + 1- 9   - 3    - 1    1     3     9      
m- 10- 4- 2028

 Vậy m ∈ { - 10 ; - 4 ; - 2 ; 0 ; 2 ; 8 }

16 tháng 2 2017

Để A nguyên <=> \(\frac{2m-7}{m+1}\in Z\Leftrightarrow\frac{2\left(m+1\right)-9}{m+1}=2-\frac{9}{m+1}\in Z\Leftrightarrow\frac{9}{m+1}\in Z\)

Hay m+1 là U(9)

Ta có bảng sau:

m+1-9-3-1139
m-10-4-2028

Vậy m=...

Đề bài yêu cầu gì?

5 tháng 4 2022

đề bài

loading...  loading...  

3 tháng 11 2017

a) \(x\ne2;-2;-4\)

b) và c) thì bạn rút gọn M rồi tính

4 tháng 11 2017

cách nhân ntn ạ 

28 tháng 4 2016

a. ĐK: \(x\ge0,x\ne49\)

\(M=\frac{3\left(\sqrt{x}+7\right)-\left(\sqrt{x}-7\right)}{\left(\sqrt{x}-7\right)\left(\sqrt{x}+7\right)}:\frac{2\sqrt{x}+6}{x-49}\)

\(=\frac{2\sqrt{x}+28}{x-49}.\frac{x-49}{2\sqrt{x}+6}=\frac{2\sqrt{x}+28}{2\sqrt{x}+6}\)

b. M nguyên \(\Leftrightarrow\frac{2\sqrt{x}+28}{2\sqrt{x}+6}\in Z\Rightarrow\frac{2\sqrt{x}+6+22}{2\sqrt{x}+6}\in Z\Rightarrow1+\frac{22}{2\sqrt{x}+6}\in Z\Rightarrow\frac{22}{2\sqrt{x}+6}\in Z\Rightarrow\left(2\sqrt{x}+6\right)\inƯ\left(22\right)\)

Đến đây đã rất dễ dàng rồi nhé ^^

29 tháng 4 2016

đề không cho tìm x NGUYÊN để m nguyên mà chỉ tìm các điểm x để  m nguyên thôi

8 tháng 12 2021

c

Chọn C

22 tháng 12 2021

c: Để C nguyên thì \(x^2-3\in\left\{-1;1;5\right\}\)

\(\Leftrightarrow x^2=4\)

hay \(x\in\left\{2;-2\right\}\)

22 tháng 12 2021

\(b,B=\dfrac{2x-1}{x-1}=\dfrac{2\left(x-1\right)+1}{x-1}=2+\dfrac{1}{x-1}\)

Do \(2\in Z\Rightarrow\)\(\dfrac{1}{x-1}\in Z\Rightarrow x-1\inƯ\left(1\right)=\left\{\pm1\right\}\)

\(x-1\)\(1\)\(-1\)
\(x\)\(2\)\(0\)

 

a) Để phân số \(\dfrac{26}{x+3}\) nguyên thì \(26⋮x+3\)

\(\Leftrightarrow x+3\in\left\{1;-1;2;-2;13;-13;26;-26\right\}\)

hay \(x\in\left\{-2-4;-1;-5;10;-16;23;-29\right\}\)

b) Để phân số \(\dfrac{x+6}{x+1}\) nguyên thì \(x+6⋮x+1\)

\(\Leftrightarrow5⋮x+1\)

\(\Leftrightarrow x+1\in\left\{1;-1;5;-5\right\}\)

hay \(x\in\left\{0;-2;4;-6\right\}\)

c) Để phân số \(\dfrac{x-2}{x+3}\) nguyên thì \(x-2⋮x+3\)

\(\Leftrightarrow-5⋮x+3\)

\(\Leftrightarrow x+3\in\left\{1;-1;5;-5\right\}\)

hay \(x\in\left\{-2;-4;2;-8\right\}\)

d) Để phân số \(\dfrac{2x+1}{x-3}\) nguyên thì \(2x+1⋮x-3\)

\(\Leftrightarrow7⋮x-3\)

\(\Leftrightarrow x-3\in\left\{1;-1;7;-7\right\}\)

hay \(x\in\left\{4;2;10;-4\right\}\)

30 tháng 6 2021

củm ơn ạ

28 tháng 9 2021

\(M=\dfrac{7\sqrt{a}-2}{2\sqrt{a}+1}\left(đk:a\ge0\right)=\dfrac{3\left(2\sqrt[]{a}+1\right)+\sqrt{a}-5}{2\sqrt{a}+1}=3+\dfrac{\sqrt{a}-5}{2\sqrt{a}+1}\)

Để \(M\in Z,M>0\) thì \(\sqrt{a}-5\ge0\Leftrightarrow a\ge25\) và:

\(\left\{{}\begin{matrix}\sqrt{a}-5⋮2\sqrt{a}+1\\2\sqrt{a}+1⋮2\sqrt{a}+1\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}2\sqrt{a}-10⋮2\sqrt{a}+1\\2\sqrt{a}+1⋮2\sqrt{a}+1\end{matrix}\right.\)

\(\Rightarrow\left(2\sqrt{a}+1\right)-\left(2\sqrt{a}-10\right)⋮2\sqrt{a}+1\)

\(\Rightarrow11⋮2\sqrt{a}+1\Rightarrow2\sqrt{a}+1\inƯ\left(11\right)=\left\{-11;-1;1;11\right\}\)

Do \(\sqrt{a}\ge0\forall a\)

\(\Rightarrow\sqrt{a}\in\left\{0;5\right\}\)

\(\Rightarrow a\in\left\{0\left(loại\right);25\left(nhận\right)\right\}\)

13 tháng 4 2017

Đáp án B

Đặt t = 3sin x - 4 cos x => -5 ≤ t ≤ 5

Ta có: y = t2 – 2t + 2m – 1 = (t – 1)2 + 2m - 2

Với mọi t ta có (t – 1)2 ≥ 0 nên y ≥ 2m - 2 => min y = 2m - 2

Hàm số chỉ nhận giá trị dương ⇔ y > 0 ∀x ∈ R ⇔ min y > 0

⇔ 2m - 2 > 0 ⇔ m > 1