Tìm : x
X*6+x*2=7360
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
$x(x+2)(x+4)(x+6)+8$
$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$
$=a(a+8)+8$ (đặt $x^2+6x=a$)
$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$
Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$
2.
$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$
$=5-(x^2+5x-6)(x^2+5x+6)$
$=5-[(x^2+5x)^2-6^2]$
$=41-(x^2+5x)^2\leq 41$
Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$
Bài 1:
a) Ta có: \(\dfrac{17}{6}-x\left(x-\dfrac{7}{6}\right)=\dfrac{7}{4}\)
\(\Leftrightarrow\dfrac{17}{6}-x^2+\dfrac{7}{6}x-\dfrac{7}{4}=0\)
\(\Leftrightarrow-x^2+\dfrac{7}{6}x+\dfrac{13}{12}=0\)
\(\Leftrightarrow-12x^2+14x+13=0\)
\(\Delta=14^2-4\cdot\left(-12\right)\cdot13=196+624=820\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{14-2\sqrt{205}}{-24}=\dfrac{-7+\sqrt{205}}{12}\\x_2=\dfrac{14+2\sqrt{2015}}{-24}=\dfrac{-7-\sqrt{205}}{12}\end{matrix}\right.\)
b) Ta có: \(\dfrac{3}{35}-\left(\dfrac{3}{5}-x\right)=\dfrac{2}{7}\)
\(\Leftrightarrow\dfrac{3}{5}-x=\dfrac{3}{35}-\dfrac{10}{35}=\dfrac{-7}{35}=\dfrac{-1}{5}\)
hay \(x=\dfrac{3}{5}-\dfrac{-1}{5}=\dfrac{3}{5}+\dfrac{1}{5}=\dfrac{4}{5}\)
a, \(\Leftrightarrow3x\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=0\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy ...
b, \(\Leftrightarrow\left(x-6\right)\left(x+10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\x+10=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-10\end{matrix}\right.\)
Vậy ...
c, \(\Leftrightarrow\left(x+2\right)^2-\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+2-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-1\end{matrix}\right.\)
Vậy ...
\(a.\)
\(3x^2-6x=0\)
\(\Leftrightarrow3x\cdot\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=0\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
\(b.\)
\(x\cdot\left(x-6\right)+10\cdot\left(x-6\right)=0\)
\(\Leftrightarrow\left(x-6\right)\cdot\left(x+10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\x+10=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-10\end{matrix}\right.\)
\(c.\)
\(\left(x+2\right)^2=x+2\)
\(\Leftrightarrow x^2+4x+4-x-2=0\)
\(\Leftrightarrow x^2+3x+2=0\)
\(\Leftrightarrow\left(x+1\right)\cdot\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2\end{matrix}\right.\)
a) Ta có: \(A=\left(\dfrac{2}{x+2}-\dfrac{1}{x-3}+\dfrac{5-x}{x^2-x-6}\right)\cdot\left(x-\dfrac{6}{x-1}\right)\)
\(=\left(\dfrac{2\left(x-3\right)}{\left(x+2\right)\left(x-3\right)}-\dfrac{x+2}{\left(x-3\right)\left(x+2\right)}+\dfrac{5-x}{\left(x-3\right)\left(x+2\right)}\right)\cdot\dfrac{x\left(x-1\right)-6}{x-1}\)
\(=\dfrac{2x-6-x-2+5-x}{\left(x+2\right)\left(x-3\right)}\cdot\dfrac{x^2-x-6}{x-1}\)
\(=\dfrac{-3}{x-1}\)
a: Ta có: \(\left(x-5\right)\left(x+3\right)=x\left(x-3\right)\)
\(\Leftrightarrow x^2-2x-15-x^2+3x=0\)
\(\Leftrightarrow x=15\)
b: Ta có: \(\left(x+2\right)^2=\left(x-1\right)\left(x+2\right)\)
\(\Leftrightarrow x+2=0\)
hay x=-2
c: Ta có: \(\left(x-6\right)\left(x+6\right)=x^2\)
\(\Leftrightarrow x^2-36=x^2\)(vô lý)
a. (x - 5)(x + 3) = x(x - 3)
<=> x2 + 3x - 5x - 15 = x2 - 3x
<=> x2 - x2 + 3x - 5x + 3x - 15 = 0
<=> x = 15
b. (x + 2)2 = (x - 1)(x + 2)
<=> x2 + 4x + 4 = x2 + 2x - x - 2
<=> x2 - x2 + 4x - 2x + x = -2 - 4
<=> 3x = -5
<=> \(x=\dfrac{-5}{3}\)
c. (x - 6)(x + 6) = x2
<=> x2 - 36 - x2 = 0
<=> x2 - x2 = 36
<=> 0 = 36 (vô lí)
Vậy nghiệm của PT là \(S=\varnothing\)
d. (2x - 3)2 = 4x2 - 8
<=> 4x2 - 12x + 9 - 4x2 + 8 = 0
<=> 4x2 - 4x2 - 12x = -8 - 9
<=> -12x = -17
<=> \(x=\dfrac{17}{12}\)
\(x.x\left(x-6\right)-3x\left(2+x\right)=2x-6\)
\(\Rightarrow x^2-6x-6x-3x^2=2x-6\)
\(\Rightarrow-2x^2-6x-6x=2x-6\)
\(\Rightarrow-2x^2-8x-6=-6\)
\(\Rightarrow-2x^2-8x=0\)
\(\Rightarrow-2x.\left(x+4\right)=0\)
\(TH1:-2x=0\Rightarrow x=0\)
\(TH2:x+4=0\Rightarrow x=-4\)
Vậy nghiệm của đa thức trên là: \(0;-4\)
\(1,\sqrt{3}x-3=\sqrt{27}\)
\(\Leftrightarrow\sqrt{3}x-3=3\sqrt{3}\)
\(\Leftrightarrow\sqrt{3}\left(x-\sqrt{3}\right)=3\sqrt{3}\)
\(\Leftrightarrow x-\sqrt{3}=3\)
\(\Leftrightarrow x=3+\sqrt{3}\)
\(2,\sqrt{2}x-\sqrt{28}=\sqrt{32}\)
\(\Leftrightarrow\sqrt{2}x-2\sqrt{7}=4\sqrt{2}\)
\(\Leftrightarrow\sqrt{2}x=4\sqrt{2}+2\sqrt{7}\)
\(\Leftrightarrow x=\dfrac{\sqrt{2^2}\left(2\sqrt{2}+\sqrt{7}\right)}{\sqrt{2}}\)
\(\Leftrightarrow x=\sqrt{2}\left(2\sqrt{2}+\sqrt{7}\right)\)
\(\Leftrightarrow x=4+\sqrt{14}\)
\(3,\sqrt{6}x-2\sqrt{6}=\sqrt{54}\)
\(\Leftrightarrow\sqrt{6}\left(x-2\right)=3\sqrt{6}\)
\(\Leftrightarrow x-2=3\)
\(\Leftrightarrow x=5\)
\(4,\sqrt{3}x-\sqrt{2}x=\sqrt{3}+\sqrt{2}\)
\(\Leftrightarrow\left(\sqrt{3}-\sqrt{2}\right)x=\sqrt{3}+\sqrt{2}\)
\(\Leftrightarrow x=\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}\)
Lời giải:
$x\times 6+x\times 2=7360$
$x\times (6+2)=7360$
$x\times 8=7360$
$x=7360:8=920$