14⋮(x-5),xϵN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3n+14⋮n+2\)
=>\(3n+6+8⋮n+2\)
=>\(8⋮n+2\)
=>\(n+2\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)
=>\(n\in\left\{-1;-3;0;-4;2;-6;6;-10\right\}\)
mà n>=0
nên \(n\in\left\{0;2;6\right\}\)
điều kiện : \(x\ne5\)
ta có : \(\dfrac{x-5}{x-5}+\dfrac{x-6}{x-5}+\dfrac{x-7}{x-5}+...+\dfrac{1}{x-5}=4\)
\(\Leftrightarrow\dfrac{x-5}{x-5}+\dfrac{x-6}{x-5}+\dfrac{x-7}{x-5}+...+\dfrac{x-n}{x-5}=4\) (với \(n=x-1\))
\(\Leftrightarrow\dfrac{x-5+x-6+x-7+...+x-n}{x-5}=4\)
\(\Leftrightarrow\dfrac{\left(n-4\right)x-5\left(n-4\right)-\left(0+1+2+3+...+n-5\right)}{x-5}=4\)
\(\Leftrightarrow\dfrac{\left(x-5\right)x-5\left(x-5\right)-\left(0+1+2+3+...+x-6\right)}{x-5}=4\)
\(\Leftrightarrow\dfrac{\left(x-5\right)x-5\left(x-5\right)-\dfrac{\left(x-6\right)\left(x-5\right)}{2}}{x-5}=4\)
\(\Leftrightarrow x-5-\dfrac{x-6}{2}=4\Leftrightarrow\dfrac{2x-10-x+6}{2}=4\)
\(\Leftrightarrow\dfrac{x-4}{2}=4\Leftrightarrow x-4=2\Leftrightarrow x=6\left(tmđk\right)\)
vậy \(x=6\)
ĐK: \(x\ge5\)
\(\dfrac{x-5}{x-5}+\dfrac{x-6}{x-5}+\dfrac{x-7}{x-5}+...+\dfrac{1}{x-5}=4\)
\(\Rightarrow\dfrac{x-5}{x-5}+\dfrac{x-6}{x-5}+\dfrac{x-7}{x-5}+...+\dfrac{x-\left(x-1\right)}{x-5}=4\)
\(\Rightarrow\dfrac{\left(x-5\right)+\left(x-6\right)+\left(x-7\right)+...+\left[x-\left(x-1\right)\right]}{x-5}=4\) (1)
Số số hạng của tử số của vế trái của (1) là: \(x-1-5+1=x-5\)
\(\Rightarrow\dfrac{x\left(x-5\right)-\left(x-1+5\right)\left(x-5\right):2}{x-5}=4\)
\(\Rightarrow x-\left(x+4\right):2=4\)
\(\Rightarrow x-\dfrac{1}{2}x-2=4\)
\(\Rightarrow\dfrac{1}{2}x=6\)
\(\Rightarrow x=12\)
\(\frac{3x+8}{x+1}=3+\frac{5}{x+1}\) ĐKXĐ: \(x\ne-1\)
để \(\frac{3x+8}{x+1}\in Z\Leftrightarrow x+1\inƯ_{\left(5\right)}=\left\{\pm1;\pm5\right\}\)
\(\Rightarrow\left\{{}\begin{matrix}x=0\\x=-2\\x=4\\x=-6\end{matrix}\right.\)
\(\Rightarrow A=\left\{-2;-6;0;4\right\}\)
\(B=\left\{x\in N|\left|x+2\right|< 5\right\}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2< 5\\x+2< -5\end{matrix}\right.\) (x+2<-5 loại vì \(x\in N\) )
\(\Rightarrow B=\left\{0;1;2\right\}\)
\(\Rightarrow A\cup B=\left\{0;1;2;-2;-6;4\right\}\)
\(A\cap B=\left\{0\right\}\)
A\B={-2;-6;4}
45,90,150 đều chia hết cho x
\(\Rightarrow x\inƯC\left(45;90;150\right)\\ 45=5.3^2;90=2.5.3^2;150=2.5^2.3\\ \RightarrowƯCLN\left(45;90;150\right)=5.3=15\\ \Rightarrow x\inƯ\left(15\right)=\left\{1;3;5;15\right\}\)
Vì x< 10 => x=1 hoặc x=3 hoặc x=5
\(7⋮x-1\)
\(\Rightarrow x-1\inƯ\left(7\right)\)
Ta có:
\(Ư\left(7\right)=\left\{1;7\right\}\)
\(\Rightarrow x-1\in\left\{1;7\right\}\)
\(\Rightarrow x\in\left\{2;8\right\}\)
a, 2\(^x\) - 15 = 17
2\(^x\) = 17 + 15
2\(^x\) = 32
2\(^x\) = 25
\(x\) = 5
b, (2\(x\) - 11)5 = 24.32 + 99
(2\(x\) - 11)5 = 16.9 + 99
(2\(x\) - 11)5 = 144 + 99
(2\(x\) - 11)5 = 243
(2\(x\) - 11)5 = 35
2\(x\) - 11 = 3
2\(x\) = 3 + 11
2\(x\) = 14
\(x\) = 14: 2
\(x\) = 7
c, \(x^{10}\) = 1\(^x\)
\(x^{10}\) = 1
\(x^{10}\) = 110
\(\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
\(x\) \(\in\) { -1; 1}
A) \(...\Rightarrow2^x=32=2^5\Rightarrow x=5\)
B) \(...\Rightarrow\left(2x-11\right)^5=243=3^5\)
\(\Rightarrow2x-11=5\Rightarrow2x=16\Rightarrow x=8\)
C) \(...\Rightarrow x^{10}=1=x^0\Rightarrow x=1\)
\(a,A=\left\{0;1;2;3;4\right\}\\ b,B=\left\{-16;-13;-10;-7;-4;-1;2;5;8\right\}\\ c,C=\left\{-9;-8;-7;...;7;8;9\right\}\\ d,x^2-3x+1=0\\ \Delta=9-4=5\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3-\sqrt{5}}{2}\\x=\dfrac{3+\sqrt{5}}{2}\end{matrix}\right.\\ \Leftrightarrow D=\left\{\dfrac{3-\sqrt{5}}{2};\dfrac{3+\sqrt{5}}{2}\right\}\)
\(e,2x^3-5x^2+2x=0\\ \Leftrightarrow x\left(x-2\right)\left(2x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=\dfrac{1}{2}\left(ktm\right)\end{matrix}\right.\\ \Leftrightarrow E=\left\{0;2\right\}\\ f,F=\left\{0;3;6;9;12;15;18\right\}\)
14 chia hết cho (x-5)
Suy ra x-5 thuộc Ư(14)
Suy ra 5 thuộc {1,2,7,14}
Suy ra x thuộc {-4,-3,2,9}
Mà x thuộc N
Suy ra x thuộc {2,9}
sos