Tìm x :
(1/2)^x +(1/2)^x+4 =7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: x*3/4=1/5
=>x=1/5:3/4=1/5*4/3=4/15
b: x*3/7=2/5
=>x=2/5:3/7=2/5*7/3=14/15
c: 1/3+2/9=2/12x
=>1/6x=3/9+2/9=5/9
=>x=5/9*6=30/9=10/3
d: 4/15*x-2/3=1/5
=>4/15*x=2/3+1/5=10/15+3/15=13/15
=>4x=13
=>x=13/4
e: x:1/7=2/3
=>x=2/3*1/7=2/21
f: 1/9:x=7/3
=>x=1/9:7/3=1/9*3/7=3/63=1/21
j: 1/4+5/12=8/3:x
=>8/3:x=3/12+5/12=8/12=2/3
=>x=4
h: =>7/4:x=1/5+1/2=7/10
=>x=7/4:7/10=10/4=5/2
thankkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
a) \(\left(x+4\right)^2-\left(x+1\right)\left(x-1\right)=16\)
(x + 4)2 - (x + 1) (x - 1) = 16
<=> (x2 + 8x + 16) - (x2 - 1) = 16
<=> x2 + 8x + 16 - x2 + 1 = 16
<=> 8x + 17 = 16
<=> 8x = -1
<=> x = −\(\dfrac{1}{8}\)
\(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)
\(4x^2+1-4x+\left(x^2+9+6x\right)-5\left(x^2-7^2\right)=0\)
\(4x^2+1-4x+x^2+9+6x-5x^2+245=0\)
\(\left(4x^2+x^2-5x^2\right)-\left(4x+6x\right)+\left(1+9+245\right)=0\)
\(2x+255=0\)
\(2x=-255\)
\(x=\dfrac{-255}{2}\)
P/s: Nhớ tick cho mình nha. Thanks bạn
Bài 1:
a) Ta có: \(\dfrac{17}{6}-x\left(x-\dfrac{7}{6}\right)=\dfrac{7}{4}\)
\(\Leftrightarrow\dfrac{17}{6}-x^2+\dfrac{7}{6}x-\dfrac{7}{4}=0\)
\(\Leftrightarrow-x^2+\dfrac{7}{6}x+\dfrac{13}{12}=0\)
\(\Leftrightarrow-12x^2+14x+13=0\)
\(\Delta=14^2-4\cdot\left(-12\right)\cdot13=196+624=820\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{14-2\sqrt{205}}{-24}=\dfrac{-7+\sqrt{205}}{12}\\x_2=\dfrac{14+2\sqrt{2015}}{-24}=\dfrac{-7-\sqrt{205}}{12}\end{matrix}\right.\)
b) Ta có: \(\dfrac{3}{35}-\left(\dfrac{3}{5}-x\right)=\dfrac{2}{7}\)
\(\Leftrightarrow\dfrac{3}{5}-x=\dfrac{3}{35}-\dfrac{10}{35}=\dfrac{-7}{35}=\dfrac{-1}{5}\)
hay \(x=\dfrac{3}{5}-\dfrac{-1}{5}=\dfrac{3}{5}+\dfrac{1}{5}=\dfrac{4}{5}\)
a)
\(\left(3x^2-x+1\right)\left(x-1\right)+x^2\left(4-3x\right)=\frac{5}{2}\)
\(\Leftrightarrow3x^3-x^2+x-3x^2+x-1+4x^2-3x^3=\frac{5}{2}\)
\(\Leftrightarrow2x-1=\frac{5}{2}\Leftrightarrow2x=1+\frac{5}{2}=\frac{7}{2}\Leftrightarrow x=\frac{7}{4}\)
b)
\(4\left(x+1\right)^2+\left(2x-1\right)^2-8\left(x-1\right)\left(x+1\right)=11\)
\(\Leftrightarrow4\left(x^2+2x+1\right)+\left(4x^2-4x+1\right)-8\left(x^2-1\right)=11\)
\(\Leftrightarrow4x^2+8x+4+4x^2-4x+1-8x^2+8=11\)
\(\Leftrightarrow8x+4-4x+1+8=11\Leftrightarrow4x+13=11\Leftrightarrow4x=-2\Leftrightarrow x=-\frac{1}{2}\)
c)
\(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)
\(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5\left(x^2-7^2\right)=0\)
\(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5x^2+245=0\)
\(\Leftrightarrow-4x+1+6x+9+245=0\Leftrightarrow2x+255=0\Leftrightarrow x=-\frac{255}{2}\).
a ) ( 3x2 - x + 1 ) ( x + 1 ) + x2 ( 4 - 3x ) = 5/2
=> 3x3 + 3x2 - x2 - x + x + 1 + 4x2 - 3x3 = 5/2
=> 6x2 + 1 = 5/2
=> 6x2 = 1,5
=> x2 = 0,25
=> x = 0,5
\(a,\dfrac{-1}{8}=\dfrac{3}{x}\\ \dfrac{3}{-24}=\dfrac{3}{x}\\ x=-24\\ b,\dfrac{x}{3}=\dfrac{3}{x}\\ x.x=3.3\\ x^2=9\\ x=\pm3\\ c,\dfrac{3}{4}.x=1\dfrac{1}{2}\\ \dfrac{3}{4}.x=\dfrac{3}{2}\\ x=\dfrac{3}{2}:\dfrac{3}{4}\\ x=2\\ d,x-\dfrac{3}{10}=\dfrac{7}{15}:\dfrac{3}{5}\\ x-\dfrac{3}{10}=\dfrac{7}{9}\\ x=\dfrac{7}{9}+\dfrac{3}{10}\\ x=\dfrac{97}{90}\\ e,\dfrac{-4}{7}-x=\dfrac{-8}{3}.\dfrac{3}{7}\\ \dfrac{-4}{7}-x=\dfrac{-8}{7}\\ x=\dfrac{-4}{7}+\dfrac{8}{7}\\ x=\dfrac{4}{7}\\ \)
a) \(\Rightarrow x^2+8x+16-x^2+1=19\)
\(\Rightarrow8x=2\Rightarrow x=\dfrac{1}{4}\)
b) \(\Rightarrow4x^2-4x+1+x^2+6x+9-5x^2+245=0\)
\(\Rightarrow2x=-255\Rightarrow x=-\dfrac{255}{2}\)
a: Ta có: \(\left(x+4\right)^2-\left(x+1\right)\left(x-1\right)=19\)
\(\Leftrightarrow x^2+8x+16-x^2+1=19\)
\(\Leftrightarrow x=\dfrac{1}{4}\)
b: Ta có: \(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)
\(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5x^2+245=0\)
\(\Leftrightarrow2x=-255\)
hay \(x=-\dfrac{255}{2}\)
\(6-2\left(x-1\right)=4\)
\(\Rightarrow2\left(x-1\right)=6-4\)
\(\Rightarrow2\left(x-1\right)=2\)
\(\Rightarrow x-1=1\)
\(\Rightarrow x=1+1=2\)
________________
\(2\cdot\left(x-2\right)+1=7\)
\(\Rightarrow2\cdot\left(x-2\right)=7-1\)
\(\Rightarrow2\cdot\left(x-2\right)=6\)
\(\Rightarrow x-2=3\)
\(\Rightarrow x=3+2=5\)
_______________
\(\left(2\cdot x-3\right)+4=9\)
\(\Rightarrow2\cdot x-3=5\)
\(\Rightarrow2\cdot x=3+5\)
\(\Rightarrow2\cdot x=8\)
\(\Rightarrow x=\dfrac{8}{2}=4\)
________________
\(\left(3\cdot x-2\right)-1=3\)
\(\Rightarrow3\cdot x-2=3+1\)
\(\Rightarrow3\cdot x-2=4\)
\(\Rightarrow3\cdot x=6\)
\(\Rightarrow x=\dfrac{6}{3}=2\)
a: =>2(x-1)=2
=>x-1=1
=>x=2
b: =>2(x-2)=6
=>x-2=3
=>x=5
c; =>2x-3=5
=>2x=8
=>x=4
d: =>3x-2=4
=>3x=6
=>x=2
e: =>2(6-x)=4
=>6-x=2
=>x=4
f: =>x-2=5
=>x=7
g: =>10-2x=4
=>2x=6
=>x=3
h: =>2x+4=3
=>2x=-1
=>x=-1/2
j: =>x+2=12
=>x=10
l: =>2x+3=3
=>2x=0
=>x=0
\(1,\Leftrightarrow x\left(x-9\right)=0\Leftrightarrow\left[{}\begin{matrix}x=9\\x=0\end{matrix}\right.\\ 2,\Leftrightarrow x^2-4x-x^2=7\Leftrightarrow-4x=7\Leftrightarrow x=-\dfrac{7}{4}\\ 3,\Leftrightarrow3x+2x-10=5\Leftrightarrow5x=15\Leftrightarrow x=3\\ 4,\Leftrightarrow\left(5x-1\right)\left(5x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=-\dfrac{1}{5}\end{matrix}\right.\\ 5,\Leftrightarrow\left(x-2\right)\left(3x-5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{5}{3}\end{matrix}\right.\\ 6,\Leftrightarrow\left(x-7\right)\left(3x+4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-\dfrac{4}{3}\end{matrix}\right.\)
\(7,\Leftrightarrow\left(2x-3\right)\left(2x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\\ 8,\Leftrightarrow\left(x-4\right)\left(10x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{5}\\x=4\end{matrix}\right.\\ 9,\Leftrightarrow2x^2-5x-2x^2=0\Leftrightarrow x=0\\ 10,\Leftrightarrow2x\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\\ 11,\Leftrightarrow\left(4x-3\right)\left(3-2x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=\dfrac{3}{2}\end{matrix}\right.\\ 12,\Leftrightarrow2x^2-10x-2x^2=3\Leftrightarrow-10x=3\Leftrightarrow x=-\dfrac{3}{10}\)
\(1,\Leftrightarrow x\left(x-9\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=9\end{matrix}\right.\\ 2,\Leftrightarrow x^2-4x-x^2=7\\ \Leftrightarrow-4x=7\\ \Leftrightarrow x=\dfrac{-7}{4}\\ 3,\Leftrightarrow3x+2x-10=5\\ \Leftrightarrow5x=15\\ \Leftrightarrow x=3\\ 4,\Leftrightarrow\left(5x-1\right)\left(5x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=-\dfrac{1}{5}\end{matrix}\right.\)
\(5,\Leftrightarrow\left(x-2\right)\left(3x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{5}{3}\end{matrix}\right.\\ 6,\Leftrightarrow\left(3x+4\right)\left(x-7\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{4}{3}\\x=7\end{matrix}\right.\\ 7,\Leftrightarrow\left(2x-3\right)\left(2x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
\(8,\Leftrightarrow10x\left(x-4\right)+2\left(x-4\right)=0\\ \Leftrightarrow\left(x-4\right)\left(10x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{1}{5}\end{matrix}\right.\\ 9,\Leftrightarrow2x^2-5x-2x^2=0\\ \Leftrightarrow-5x=0\\ \Leftrightarrow x=0\\ 10,\Leftrightarrow2x\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
\(11,\Leftrightarrow\left(2x-3\right)\left(4x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{3}{4}\end{matrix}\right.\\ 12,\Leftrightarrow2x^2-10x-2x^2=3\\ \Leftrightarrow-10x=3\\ \Leftrightarrow x=-\dfrac{3}{10}\)
bài 1:
a) (x+1)^2-(x-1)^2-3(x+1)(x-1)
=(x+1+x-1)(x+1-x+1)-3x^2-3
=2x^2-3x^2-3
=-x^2-3