tìm các cặp số nguyên(a,b) biết
\(3a-b+ab=8\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3a-b+ab=8\)
\(\Rightarrow\) \(a\left(b+3\right)-\left(b+3\right)=5\)
\(\Rightarrow\) \(\left(a-1\right)\left(b+3\right)=5=1.5=\left(-1\right).\left(-5\right)\)
Lập bảng, ta tìm được a = 2, b = 2
Ta có 3a-b+ab=8
=>a.(3+b)-(3+b)=5(trừ hai về ik 3)
=>(a-1).(3+b)=5
Do a,b là số nguyên dương nên a-1 và b+3 là cặp ước của 5
tự lập bảng làm nhé
\(3a-b+ab=8\\ \Rightarrow a\left(3+b\right)-b-3=8-3\\ \Rightarrow a\left(b+3\right)-\left(b+3\right)=5\\ \Rightarrow\left(b+3\right)\left(a-1\right)=5\)
Vì \(a,b\in N\Rightarrow\left\{{}\begin{matrix}a-1\in Z,b+3\in N,b+3\ge3\\a-1,b+3\inƯ\left(5\right)\end{matrix}\right.\)
Ta có bảng:
a-1 | 1 |
b+3 | 5 |
a | 2 |
b | 2 |
Vậy \(\left(a,b\right)\in\left\{\left(2;2\right)\right\}\)
ab + b = a + 5
< = > b ( a + 1 ) - ( a + 1 ) = 4
< = > ( a + 1 ) ( b - 1 ) = 4
Do a, b nguyên nên a + 1 , b - 1 nguyên
= > a + 1 , b - 1 thuộc Ư(4) \(\in\left\{\pm1;\pm2;\pm4\right\}\)
và ( a + 1 ) ( b - 1 ) = 4
Xét bảng sau :
a + 1 | 1 | 4 | -1 | -4 | 2 | -2 |
b - 1 | 4 | 1 | -4 | -1 | 2 | -2 |
a | 0 | 3 | -2 | -5 | 1 | -3 |
b | 5 | 2 | -3 | 0 | 3 | -1 |
Vậy ....
Ai chs opoke đại chiên lh mik nha! Đỏi lấy nick olm hoặc cho mik
Bạn tham khảo:
3a−b+2ab−10
⇒2ab−b+3a=10
⇒b(2a−1)+3a=10
⇒2b(2a−1)+6a=10.2
⇒2b(2a−1)+6a−3=20−3
⇒2b(2a−1)+3(2a−1)=17
⇒(2a−1)(2b+3)=17
⇒2a−1∈Ư(17)=⇒2a−1∈Ư(17)= { ±1;±17±1;±17 }
.) Nếu 2a−1=12a−1=1 thì 2b+3=172b+3=17
⇒a=1;b=7
.) Nếu 2a−1=−12a−1=−1 thì 2b+3=−172b+3=−17
⇒a=0;b=−10
.) Nếu 2a−1=172a−1=17 thì 2b+3=12b+3=1
⇒a=9;b=−1
.) Nếu 2a−1=−172a−1=−17 thì 2b+3=−12b+3=−1
⇒a=−8;b=−2
Bài 2 :
\(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)
<=> a^2 + b^2 + c^2 + 2ab + 2bc + 2ca = 3ab + 3bc + 3ca
<=> a^2 + b^2 + c^2 = ab + bc + ca
<=> 2a^2 + 2b^2 + 2c^2 = 2ab + 2bc + 2ca
<=> ( a - b )^2 + ( b - c )^2 + ( c - a )^2 = 0
<=> a = b = c
1.
\(\Leftrightarrow2a^2+2b^2+18=2ab+6a+6b\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-6a+9\right)+\left(b^2-6b+9\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-3\right)^2+\left(b-3\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\a-3=0\\b-3=0\end{matrix}\right.\) \(\Leftrightarrow a=b=3\)
2.
\(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=3ab+3bc+3ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c\)