Cho tam giác MNP có PN=PM=90cm. Cho NM=82cm
Tính diện tích MNP
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔMNP và ΔEFP có
MP=EP(gt)
\(\widehat{MPN}=\widehat{EPF}\)(hai góc đối đỉnh)
NP=FP(gt)
Do đó: ΔMNP=ΔEFP(c-g-c)
b) Ta có: MN=ND(gt)
mà N nằm giữa M và D(gt)
nên N là trung điểm của MD
Ta có: MP=PE(gt)
mà P nằm giữa M và E(gt)
nên P là trung điểm của ME
Xét ΔMDE có
N là trung điểm của MD(cmt)
P là trung điểm của ME(cmt)
Do đó: NP là đường trung bình của ΔMDE(Định nghĩa đường trung bình của tam giác)
hay NP//DE(Định lí 2 về đường trung bình của tam giác)
Hình minh họa :)
N P M
a) Xét △MNP vuông tại P
=> PM2 + PN2 = MN2 (định li Pytago)
=> PN2 = MN2 - PM2
=> PN2 = 102 - 62
=> PN2 = 64
=> PN = 8
Vậy PN = 8
b) Xét △MNP vuông tại P
=> PM2 + PN2 = MN2 (định li Pytago)
=> PN2 = MN2 - PM2
=> PN2 = 72 - 32
=> PN2 = 40
=> PN = \(\sqrt{40}\)
Vậy PN = \(\sqrt{40}\)
c) Vì MNP cân tại P => PM = PN => PN = 2
Xét △MNP vuông tại P
=> PM2 + PN2 = MN2 (định li Pytago)
=> MN2 = 2 . 22
=> MN2 = 8
=> MN = \(\sqrt{8}\)
Vậy MN = \(\sqrt{8}\)
a/ S(ABNP)= 36*36/2; S(PAM)+S(NBM)= 24*12; S(MNP)= S(ABNP) - S(PAM) - S(NBM) = 360 c m 2 360 c m 2 b/240 c m 2
a/
S(ABNP)= 36*36/2; S(PAM)+S(NBM)= 24*12; S(MNP)= S(ABNP) - S(PAM) - S(NBM) = 360cm2
360cm2
b/240cm2
P M N
Ta có: ∆MNP có PM=PN
=>∆MNP cân tại P
=> góc PMN=góc PNM (dpcm)
Xét ΔPMN có PH là phân giác
nên MH/MP=NH/NP
=>NH/6=2/4=1/2
hay NH=3(cm)
Xét ΔMNP có :
PM = PN ( gt )
⇒ ΔMNP cân.
⇒ ^PMN = ^PNM ( t/c Δcân )
Vì PQ là phân giác góc P trong ΔMNP
=> \(\frac{PM}{PN}\)= \(\frac{QM}{QN}\)
<=> \(\frac{6}{8}\)= \(\frac{QM}{QN}\)
<=> \(\frac{QN}{8}\)= \(\frac{QM}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{QN}{8}\)= \(\frac{QM}{6}\)= \(\frac{QN+QM}{6+8}\)= \(\frac{MN}{14}\)= \(\frac{10}{14}\)= \(\frac{5}{7}\)
=> QM = \(\frac{5}{7}\) . 6 = \(\frac{30}{7}\) (cm)