Tìm giá trị lớn nhất
A= 8 - 6 . I x - 2 I
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1)\) Ta có :
\(\left|2x-1\right|\ge0\)
\(\Leftrightarrow\)\(A=\left|2x-1\right|+8\ge8\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left|2x-1\right|=0\)
\(\Leftrightarrow\)\(2x-1=0\)
\(\Leftrightarrow\)\(2x=1\)
\(\Leftrightarrow\)\(x=\frac{1}{2}\)
Vậy GTNN của \(A\) là \(8\) khi \(x=\frac{1}{2}\)
Chúc bạn học tốt ~
\(2)\) Ta có :
\(B=\left|x-3\right|+\left|x-9\right|-1\)
\(B=\left|x-3\right|+\left|9-x\right|-1\ge\left|x-3+9-x\right|-1=\left|6\right|-1=6-1=5\)
Dấu "=" xảy ra khi và chỉ khi \(\left(x-3\right)\left(9-x\right)\ge0\)
Trường hợp 1 :
\(\hept{\begin{cases}x-3\ge0\\9-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge3\\x\le9\end{cases}\Leftrightarrow}3\le x\le9}\)
Trường hợp 2 :
\(\hept{\begin{cases}x-3\le0\\9-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le3\\x\ge9\end{cases}}}\) ( loại )
Vậy GTNN của \(B\) là \(5\) khi \(3\le x\le9\)
Chúc bạn học tốt ~
A = 1000 - I x + 6 I
1000 - I x + 6 I = A
Vậy 1000 là số bị trừ , I x + 6 I là số trừ và A là hiệu .
Nếu số bị trừ ko thay đổi thì hiệu sẽ càng lớn khi số trừ càng nhỏ
=> A đạt max khi I x + 6 I đạt min
Min I x + 6 I đạt là 0
=> Max của A = 1000 - 0 = 1000
Vậy Max A = 1000
1/ Gọi Bmin là GTNN của B
Ta có \(\left|3x-6\right|\ge0\)=> \(2\left|3x-6\right|\ge0\)với mọi \(x\in R\)
=> \(2\left|3x-6\right|-4\ge0\)với mọi \(x\in R\).
=> Bmin = 0.
Vậy GTNN của B = 0.
2/ Gọi Dmin là GTNN của D.
Ta có \(\left|x-2\right|\ge0\)với mọi \(x\in R\)
và \(\left|x-8\right|\ge0\)với mọi \(x\in R\)
=> \(\left|x-2\right|+\left|x-8\right|\ge0\)với mọi \(x\in R\)
=> Dmin = 0.
=> \(\left|x-2\right|+\left|x-8\right|=0\)
=> \(\hept{\begin{cases}\left|x-2\right|=0\\\left|x-8\right|=0\end{cases}}\)=> \(\hept{\begin{cases}x-2=0\\x-8=0\end{cases}}\)=> \(\hept{\begin{cases}x=2\\x=8\end{cases}}\)(Vô lý! Không thể cùng lúc có 2 giá trị x xảy ra)
Vậy không có x thoả mãn đk khi GTNN của D = 3.
g) G = x2 + 6x + 4y2 - 10y + 5
G = (x2+ 6x + 9) + 4(y2 - 2,5y + 1,5625) - 10,25
G = (x + 3)2 + 4(y - 1,25)2 - 10,25 \(\ge\)-10,25 với mọi x;y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+3=0\\y-1,25=0\end{cases}}\) <=> \(\hept{\begin{cases}x=-3\\y=1,25\end{cases}}\)
Vậy MinG = -10,25 khi x = -3 và y = 1,25
h) H = -2x2 - 6x - 3y2 + 12y - 8
H = -2(x2 + 3x + 2,25) - 3(y2 - 4y + 4)+ 8,5
H = -2(x + 1,5)2 - 3(Y - 2)2 + 8,5 \(\le\)8,5 với mọi x;y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+1,5=0\\y-2=0\end{cases}}\)<=> \(\hept{\begin{cases}x=-1,5\\y=2\end{cases}}\)
vậy MaxH = 8,5 khi x = -1,5 và y = 2
\(A=\dfrac{\left|x-150\right|+102}{\left|x-150\right|+100}=\dfrac{\left|x-150\right|+100+2}{\left|x-150\right|+100}=1+\dfrac{2}{\left|x-150\right|+100}\)
Có: |x - 150| ≥ 0
=> |x - 150| + 100 ≥ 100
\(\Rightarrow\dfrac{2}{\left|x-150\right|+100}\le\dfrac{1}{50}\)
\(\Rightarrow A\le\dfrac{51}{50}\)
Dấu = xảy ra khi x = 150
Vậy:...
\(A=\dfrac{\left|x-150\right|+102}{\left|x-150\right|+100}\\ A=\dfrac{\left|x-150\right|+100+2}{\left|x-150\right|+100}\\ A=1+\dfrac{2}{\left|x-150\right|+100}\)
\(\left|x-150\right|\ge0\forall x\\ \Rightarrow\left|x-150\right|+100\ge100\forall x\\ \Rightarrow\dfrac{2}{\left|x-150\right|+100}\le\dfrac{1}{50}\forall x\\ \Rightarrow A=1+\dfrac{2}{\left|x-150\right|+100}\le\dfrac{51}{50}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left|x-150\right|=0\\ \Leftrightarrow x-150=0\\ \Leftrightarrow x=150\)
Vậy GTLN của \(A=\dfrac{51}{50}\) khi x = 150
A = 0.5 - / x - 3.5 / < or = 0.5
A giá trị lớn nhất là 0.5 khi x = 3.5
B = - /1.4 - x / - 2 < or -2
B giá trị lớn nhất là -2 khi x = 1.4
C = 1.7+ /3.4 - x / > or = 3.4
C 1.7 x = 3.4
D = / x + 2.8 / - 3.5 > or = -3.5
x = -2.8
Vì : \(\left|x-2\right|\ge0\forall x\\ =>-6.\left|x-2\right|\le0\\ =>-6.\left|x-2\right|+8\le8\\ Hay:A=8-6.\left|x-2\right|\le8\)
Dấu ''='' xảy ra khi : `|x-2|=0=>x=2`
Vậy giá trị lớn nhất biểu thức `A` là : `8` tại `x=2`
A=8 tại x = 2