Cho a,b thuộc N. CMR :
ƯCLN(a,b)=ƯCLN(a,a+b)
Cứu mik ik
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a. Gọi d là ƯCLN(n+2, n+3). Khi đó:
$n+2\vdots d; n+3\vdots d$
$\Rightarrow (n+3)-(n+2)\vdots d$
Hay $1\vdots d$
$\Rightarrow d=1$. Vậy $ƯCLN(n+2, n+3)=1$ nên hai số này nguyên tố cùng nhau.
b.
Gọi $d=ƯCLN(2n+1, 9n+4)$
$\Rightarrow 2n+1\vdots d; 9n+4\vdots d$
$\Rightarrow 9(2n+1)-2(9n+4)\vdots d$
Hay $1\vdots d$
$\Rightarrow d=1$. Vậy $ƯCLN(2n+1, 9n+4)=1$ nên hai số này nguyên tố cùng nhau.
Bài 2:
a. Vì ƯCLN(a,b)=24 nên đặt $a=24x, b=24y$ với $x,y$ là 2 số nguyên tố cùng nhau.
Khi đó: $a+b=24x+24y=192$
$\Rightarrow 24(x+y)=192$
$\Rightarrow x+y=8$
Vì $(x,y)$ nguyên tố cùng nhau nên $(x,y)=(1,7), (3,5), (5,3), (1,7)$
$\Rightarrow (a,b)=(24,168), (72, 120), (120,72), (168,24)$
\(\frac{a}{b}+\frac{c}{d}=\frac{ad+bc}{bd}\)\(\in Z\)=> ad+bc\(⋮\)bd (1). Ta không xét những trường hợp b=d=1
Trong trường hợp b=d thì ta có a+c\(⋮\) b
Ta chứng minh rằng nếu b khác d thì a+c ko chia hết cho b
Xét b>d ( trường hợp b<d chứng minh tương tự)
Giả sử b=d+k ( k >0, k\(\in Z\))
Thay b=d+k vào (1) ta có ad+c(d+k)\(⋮\)bd
=> ad+cd+ck \(⋮\)bd
=>d(a+c)+ck\(⋮\)bd
Tới đây ta thấy rằng nếu a+c\(⋮\)b thì d(a+c)\(⋮bd\)=> ck\(⋮\)bd.
Tuy nhiên (c,d)=1 và k<b nên k ko chia hết cho b, hơn nữa c ko thể chia hết cho b vì nếu thế thì a+c:b=> a:b=> (a,b)=b\(\ne1\)
Do đó ck ko chia hết cho bd, mâu thuẫn => Với b khác d thì a+c ko chia hết cho b
=> ĐPCM
vãi
dễ