Chứng minh rằng 8k3 có thể viết dưới dạng hiệu 2 số chính phương
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
21 tháng 1 2017
Vì số đó là số lẻ nên có dạng 2k+1
Ta có: 2k+1 = 2k+1+k^2-k^2=(k+1)^2-k^2
=> Mọi số lẻ đều viết được dưới dạng 2 số chính phương
N
0
ON
11 tháng 11 2018
Cái này bạn phải dựa vào tính chất chia hết của 1 số chính phương:
Giả sử 1 số chính phương có dạng 3n+2(3n+2=x2)
Xét x có dạng 3k =>x2 = 9k2 chia hết cho 3 mà 3n+2 chia 3 dư 2
=> Vô lý
Xét x có dạng 3k+1 => x2=(3k+1)2=9k2+6k+1=3(3k2+2k)+1 chia 3 dư 1
Mà 3n+2 chia 3 dư 2
=> Vô lý
Xét x có dạng 3k+2 => x2= (3k+2)2=9k2+12k+4=3(3k2+4k+1)+1 chia 3 dư 1
mà 3n+2 chia 3 dư 2
=> vô lý
VẬY KHÔNG TỒN TẠI SỐ CHÍNH PHƯƠNG DẠNG 3N+2