Tìm a, b biết \(\overline{ab}+248=\overline{ab5}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\overline{a,b}.\overline{ab,a}=\overline{ab,ab}\)
\(\Leftrightarrow\)\(\left(\overline{a,b}.10\right)\left(\overline{ab,a}.10\right)=\overline{ab,ab}.100\)
\(\Leftrightarrow\)\(\overline{ab}.\overline{aba}=\overline{abab}\)
\(\Leftrightarrow\)\(\overline{ab}.\overline{aba}=\overline{ab}.\left(100+1\right)\)
\(\Leftrightarrow\)\(\overline{aba}=101\)
\(\Rightarrow\)\(a=1\)\(;\)\(b=0\)
Vậy \(a=1\) và \(b=0\)
Đáp án:
1352013520 hoặc 63504.63504.
Giải thích các bước giải:
¯¯¯¯¯¯¯¯¯¯¯¯¯abcde=2¯¯¯¯¯ab.¯¯¯¯¯¯¯¯cde⇒1000¯¯¯¯¯ab+¯¯¯¯¯¯¯¯cde=2¯¯¯¯¯ab.¯¯¯¯¯¯¯¯cde⇒1000¯¯¯¯¯ab=−¯¯¯¯¯¯¯¯cde+2¯¯¯¯¯ab.¯¯¯¯¯¯¯¯cde⇒1000¯¯¯¯¯ab=(2¯¯¯¯¯ab−1)¯¯¯¯¯¯¯¯cde(∗)⇒1000¯¯¯¯¯ab ⋮ 2¯¯¯¯¯ab−1�����¯=2��¯.���¯⇒1000��¯+���¯=2��¯.���¯⇒1000��¯=−���¯+2��¯.���¯⇒1000��¯=(2��¯−1)���¯(∗)⇒1000��¯ ⋮ 2��¯−1
Do (¯¯¯¯¯ab;2¯¯¯¯¯ab−1)=1(��¯;2��¯−1)=1
⇒1000 ⋮ 2¯¯¯¯¯ab−1⇒1000 ⋮ 2��¯−1
2¯¯¯¯¯ab−1≥19(¯¯¯¯¯ab2��¯−1≥19(��¯ nhỏ nhất là 10)10)
Ước dương của 10001000
Ư(1000)={1;2;4;5;8;10;20;25;40;50;100;125;200;250;500;1000}Ư(1000)={1;2;4;5;8;10;20;25;40;50;100;125;200;250;500;1000}
Do 2¯¯¯¯¯ab−12��¯−1 lẻ và 2¯¯¯¯¯ab−1≥192��¯−1≥19
⇒(2¯¯¯¯¯ab−1)∈{25;125}⊛2¯¯¯¯¯ab−1=25⇒2¯¯¯¯¯ab=26⇒¯¯¯¯¯ab=13(∗)⇒1000.13=(2.13−1)¯¯¯¯¯¯¯¯cde⇒13000=25¯¯¯¯¯¯¯¯cde⇒¯¯¯¯¯¯¯¯cde=520⊛2¯¯¯¯¯ab−1=125⇒2¯¯¯¯¯ab=126⇒¯¯¯¯¯ab=63(∗)⇒1000.63=(2.63−1)¯¯¯¯¯¯¯¯cde⇒63000=125¯¯¯¯¯¯¯¯cde⇒¯¯¯¯¯¯¯¯cde=504⇒(2��¯−1)∈{25;125}⊛2��¯−1=25⇒2��¯=26⇒��¯=13(∗)⇒1000.13=(2.13−1)���¯⇒13000=25���¯⇒���¯=520⊛2��¯−1=125⇒2��¯=126⇒��¯=63(∗)⇒1000.63=(2.63−1)���¯⇒63000=125���¯⇒���¯=504
Vậy số thoả mãn là 1352013520 hoặc 63504.
+ \(\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{\overline{ca}+\overline{ab}}{c+a}=\frac{\overline{ab}+\overline{bc}-\overline{bc}-\overline{ca}+\overline{ca}+\overline{ab}}{a+b-b-c+c+a}=\frac{2\overline{ab}}{2a}=10+\frac{b}{a}\)
+ \(\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{\overline{ca}+\overline{ab}}{c+a}=\frac{\overline{ab}+\overline{bc}+\overline{bc}+\overline{ca}-\overline{ca}-\overline{ab}}{a+b+b+c-c-a}=\frac{2\overline{bc}}{2b}=10+\frac{c}{b}\)
+ \(\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{\overline{ca}+\overline{ab}}{c+a}=\frac{-\overline{ab}-\overline{bc}+\overline{bc}+\overline{ca}+\overline{ca}+\overline{ab}}{-a-b+b+c+c+a}=\frac{2\overline{ca}}{2c}=10+\frac{a}{c}\)
=> \(\frac{b}{a}=\frac{c}{b}=\frac{a}{c}\Rightarrow\frac{b+c+a}{a+b+c}=1\Rightarrow a=b=c\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{ab}{bc}=\frac{b}{c}=\frac{ab-b}{bc-c}=\frac{\left(10a+b\right)-b}{\left(10b+c\right)-c}=\frac{10a}{10b}=\frac{a}{b}\)
\(\Rightarrow b^2=a.c\)
Do ab nguyên tố nên b lẻ khác 5 \(\Rightarrow b\in\left\{1;3;7;9\right\}\)
+ Với b = 1 thì 12 = a.c = 1 => a = c = 1, vô lý vì \(a\ne b\ne c\)
+ Với b = 3 thì 32 = a.c = 9 \(\Rightarrow\left[\begin{array}{nghiempt}a=c=3\\a=1;c=9\\a=9;c=1\end{array}\right.\), ta chọn được 1 cặp giá trị (a;c) thỏa mãn \(a\ne b\ne c\) và ab nguyên tố là (1;9)
+ Với b = 7 thì 72 = a.c = 49 => a = c = 7, vô lý vì \(a\ne b\ne c\)
+ Với b = 9 thì 92 = a.c = 81 => a = c = 9, vô lý vì \(a\ne b\ne c\)
Vậy abc = 139
Ta có:\(\frac{ab}{bc}=\frac{b}{c}\)(ab,bc có dấu gạch ngang trên đầu)
\(\Rightarrow\frac{10a+b}{10b+c}=\frac{b}{c}\)
\(\Rightarrow\left(10a+b\right)c=\left(10b+c\right)b\)
\(\Rightarrow10ac+bc=10b^2+bc\)
\(\Rightarrow10ac=10b^2\)
\(\Rightarrow ac=b^2\)
\(\Rightarrow abc=\) bao nhiêu tự tính(tui quên các chữ số đôi một là như thế nào rồi và abc có dấu gạch ngang trên đầu)
\(\sqrt{ab}=a+b\)
a^2+2ab+b^2=10a+b
a^2+2(b-5)a+b^2-b=0
a^2+2(b-5)a+(b-5)^2+9b-25=0
(a+(b-5)^2=25-9b
(a+(b-5)^2>=0\(\hept{\begin{cases}25-9b\ge0\Rightarrow b\le3\\25-9b=k^2\Rightarrow b=\left\{0,1\right\}\end{cases}}\)
\(b=0\Rightarrow\left(a-5\right)^2=25\Rightarrow\orbr{\begin{cases}a=0\left(loai\right)\\a=10\end{cases}}\)
\(b=1\Rightarrow\left(a-4\right)^2=16\Rightarrow\orbr{\begin{cases}a=0\left(loai\right)\\a=8\end{cases}}\)
Kết luận:
ab =100
ab=81