Chứng minh rằng với mọi số tự nhiên \(7^{4n}-1\) chia hết cho 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta co:74n-1=(74)n-1=2401n-1=..........1-1=...........0 chia hết cho 5
=>dpcm
a) (5n + 7).(4n + 6) = (5n + 7).2.(2n + 3) chia hết cho 2
b) Do 8n + 1 là số lẻ; 6n + 5 là số lẻ => (8n + 1).(6n + 5) là số lẻ, không chia hết cho 2
a,cách 1: ta có: (5n+7)(4n+6)=(5n+7)(2n+3).2 chia hết cho 2
Vậy (5n+7)(4n+6) chia hết cho 2
Cách 2: Ta thấy:4n+6 có chữ số tận cùng là số chẵn=>(5n+7)(4n+6) có chữ số tận cùng là số chẵn.
mà các số có chữ số tận cùng là số chẵn thì số đó chia het cho
vậy (5n+7)(4n+6) chia het cho (đpcm)
b,Ta thấy :8n+1 co chu so tan cung la so le(vi 8n co chu so tan cung la so chan,ma chan+le=le)
6n+5 co chu so tan cung la so le(vi 6n co chu so tan cung la so chan,ma chan+le=le)
từ 2 dieu tren=>(8n+1)(6n+5) co chu so tan cung la so le
vậy (8n+1)(6n+5) khong chia het cho 2 voi moi stn n
câu a bạn nên làm theo cách 2
74n - 1= (7^4)^n -1=2401^n-1 = ... 1( có dấu gạch trên đầu nữa nhé )-1=> tận cùng có số 0 nên sẽ chia hết cho 5 ^^
) 34n + 1 + 2 (3^4)^n.3+2=81^2.3+2=...1 (có dấu gạch trên đầu).3+2 => tận cùng là 5 nên chia hết cho 5
k mk nha bn
phân tích n^2+4n+8=(n+1)(n+3)
vì là số tự nhiên lẻ nên đặt n=2k+1(k thuộc N)
=>n^2+4n+8=(n+1)(n+3)=(2k+2)(2k+4)
=4.(k+1)(k+2)
(k+1)(k+2) là tích 2 số tự nhiên liên tiếp chia hết cho 2
=>4.(k+1)(k+2)\(⋮\)8
Ta có 74n - 1 = ( 74 )n - 1 = 2401n - 1 = ( ...1 ) - 1 = ( ...0 ) ⋮ 5
Vậy với mọi số tự nhiên thì ( 74n - 1 ) ⋮ 5